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a b s t r a c t

Wehave developed a novel predictionmethod based on string invariants. Themethod does
not require learning but a small set of parameters must be set to achieve optimal per-
formance. We have implemented an evolutionary algorithm for the parametric optimiza-
tion. We have tested the performance of the method on artificial and real world data and
compared the performance to statistical methods and to a number of artificial intelligence
methods. We have used data and the results of a prediction competition as a benchmark.
The results show that the method performs well in single step prediction but the method’s
performance for multiple step prediction needs to be improved. The method works well
for a wide range of parameters.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The string theorywas developed over the past 25 years and it has achieved a high degree of popularity and respect among
the physicists [1]. The predictionmodel that we have developed transfers modern physical ideas into the field of time series
prediction. The physical statistical viewpoint proved the ability to describe systemswheremany-body effects dominate. The
envisioned application field of the proposed method is econophysics but the model is certainly not limited to applications
in economy. Bottom-up approaches may have difficulties to follow the behavior of the complex economic systems where
autonomous models encounter intrinsic variability. The primary motivation comes from the actual physical concepts [2,3].

We have named the new method the Prediction Model Based on String Invariants (PMBSI). PMBSI is based on the
approaches described in Ref. [4] and extends the previous work. In Ref. [5] we have performed comparative experimental

E-mail addresses:marek.bundzel@tuke.sk (M. Bundzel), kasanicky@neuron.tuke.sk (T. Kasanick˝), pincak@saske.sk (R. Pin£ák).

http://dx.doi.org/10.1016/j.physa.2015.10.050
0378-4371/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2015.10.050
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2015.10.050&domain=pdf
mailto:marek.bundzel@tuke.sk
mailto:kasanicky@neuron.tuke.sk
mailto:pincak@saske.sk
http://dx.doi.org/10.1016/j.physa.2015.10.050


M. Bundzel et al. / Physica A 444 (2016) 680–688 681

analysis aimed to identify the strengths and the weaknesses of PMBSI and to compare its performance to Support Vector
Machine (SVM). PMBSI also represents one of the first attempts to apply the string theory in the field of time-series forecast
and not only in high energy physics. We describe briefly the prediction model below.

PMBSI needs several parameters to be set to achieve the optimal performance. We have implemented an evolutionary
algorithm to find the optimal parameters. The implementation is described below.We show the previously achieved results
and compare them to the results achieved with evolutionary optimized parameters. We have also tested PMBSI on 111 time
series used in a 2008 time series forecast competition. Thus we could compare its performance to an extensive range of
methods.

2. State of the art

Linear methods often work well and may well provide an adequate approximation for the task at hand and are
mathematically and practically convenient. However, the real life generating processes are often non-linear. Therefore
plenty of non-linear forecast models based on different approaches have been created (e.g. GARCH [6], ARCH [7], ARMA [8],
ARIMA [9] etc.). Presently, the perhaps most used methods are based on computational intelligence. A number of research
articles compare Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to each other and to other more
traditional non-linear statistical methods. Tay and Cao [10] examined the feasibility of SVM in financial time series
forecasting and compared it to a multilayer Back Propagation Neural Network (BPNN). They showed that SVM outperforms
the BP neural network. Kamruzzaman and Sarker [11] modeled and predicted currency exchange rates using three ANN
basedmodels and a comparisonwasmadewithARIMAmodel. The results showed that all the ANNbasedmodels outperform
ARIMA model. Chen et al. [12] compared SVM and BPNN taking auto-regressive model as a benchmark in forecasting the
six major Asian stock markets. Again, both the SVM and BPNN outperformed the traditional models. SVM implements the
structural risk minimization—an inductive principle for model selection used for learning from finite training data sets.
For this reason SVM is often chosen as a benchmark to compare other non-linear models. Many nature inspired prediction
methods have been tested. Egrioglu [13] applied Particle Swarm Optimization on fuzzy series forecasting. LIU et al. [14,15]
applied ANFIS and evolutionary optimization to forecast TAIEX. So far no non-linear black box method reached significant
performance superiority over others.

3. Prediction model based on string invariants

The original time-series (⌧ ) is converted as follows

p(⌧ + h) � p(⌧ )

p(⌧ + h)
(1)

where h denotes the lag between p(⌧ ) and p(⌧ + h), ⌧ is the index of the time series element. On financial data, e.g. on the
series of the quotations of the mean currency exchange rate, this operation would convert the original time-series into a
series of returns. Using the string theory let us first define the 1-end-point open string map

P

(1) (⌧ , h) = p (⌧ + h) � p (⌧ )

p (⌧ + h)
, h 2 h0, l

s

i, (2)

where the superscript (1) refers to the number of endpoints and l

s

to the length of the string (string size). l
s

is a positive
integer. The variable h may be interpreted as a variable which extends along the extra dimension limited by the string size
l

s

. A natural consequence of the transform, Eq. (2), is the fulfillment of the boundary condition

P

(1)(⌧ , 0) = 0, (3)

which holds for any ⌧ . To enhance the influence of rare events a power-law Q -deformed model is introduced

P
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The 1-end-point string has defined the origin and it reflects the linear trend in p(·) at the scale l

s

. The presence of a long-
term trend is partially corrected by fixing P

(2)(⌧ , h) at h = l

s

. The open string with two end points is introduced via the
nonlinear map which combines information about trends of p at two sequential segments
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The map is suggested to include boundary conditions of Dirichlet type

P

(2) (⌧ , 0) = P

q

(⌧ , l
s

) = 0, at all ⌧ . (6)
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In particular, the sign of P (2)(⌧ , h) comprises information about the behavior differences of p (·) at the three quotes
(⌧ , ⌧ + h, ⌧ + l

s

). The P

(2)(⌧ , h) < 0 occurs for trends of the different sign, whereas P (2)(⌧ , h) > 0 indicates the match of
the signs.

Now we define the string invariants—something that does not change under transformation. We will find the invariants
in the data and utilize them to predict the future values. A similar research aimed to discover invariant states of a financial
market is described in Ref. [16]. Let us introduce a positive integer lpr denoting the prediction scale of howmany steps ahead
of ⌧0 lies the predicted value. Let us introduce an auxiliary positive integer ⇤ and a condition

⇤ = l

s

� lpr, ls > lpr. (7)

The power of the nonlinear string maps of time-series data is to be utilized to establish a prediction model similarly as in
Refs. [17,18]. We suggest a 2-end-point mixed string model where one string is continuously deformed into the other. More
details on this approach are described in the appendix of our previous paper [5]. The family of invariants is written using
the parametrization

C(⌧ , ⇤) = (1 � ⌘1)(1 � ⌘2)
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where ⌘1 2 (�1, 1), ⌘2 2 (�1, 1) are variables that may be called the homotopy parameters, Q is a real valued parameter,
and the weightW (h) is chosen in the bimodal single parameter form
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and
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0=0
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0/⇤
.

The above formulas do not represent the only nor the ideal setting of the weight parameters. Other settings are to be
tested. p(⌧0 + lpr) is expressed in terms of the auxiliary variables

A1(⇤, ⌧ ) = (1 � ⌘1)(1 � ⌘2)
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Thus the expected prediction form reads

p(⌧0 + lpr) =


A2(⇤, ⌧ 0) + A5(⇤, ⌧ 0)

C(⌧0 � l

s

, ⇤) � A1(⇤, ⌧ 0) � A3(⇤, ⌧ 0) � A4(⇤, ⌧ 0)

�1/Q
, (11)

where ⌧ 0 = ⌧0 + lpr � l

s

, (⌧ 0 = ⌧0 � ⇤). The derivation is based on the invariance

C(⌧ , l
s

� lpr) = C(⌧ � lpr, ls � lpr), (12)

and the model will be efficient if

C(⌧0, ⇤) ' C(⌧0 + lpr, ⇤). (13)
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Fig. 1. Performance of PMBSI relative to the setting of the parameters [6]. The red dot represents the global minimum. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Themodel’s free parameters are l
s

, lpr, ⌘1, ⌘2 andQ . Thesemust be set during the evolutionary optimization phase. PMBSI
does not require learning in the traditional sense.

PMBSI requires the time-series being processed to be non-negative. Otherwise the forecasts will not be defined (NaN).
Still, PMBSI returns NaN values sometimes. This problem was fixed here by substitution of the NaN forecasts by the most
recent input for lpr = 1 (naive prediction) and by the last valid forecast recorded for lpr > 1.

4. Evolutionary optimization of PMBSI free parameters

Fig. 1 shows the dependency of the mean absolute error (MAE, Eq. (14)) on l

s

and Q setting. We have performed the
experiment with financial time series and 5 step ahead prediction as described in Ref. [6]. The values of ⌘1, ⌘2 were set to 0.
The experiment showed that there are many local minima in the parameters space although PMBSI performs relatively well
for a wide range of settings. The next logical step was to find a method to set all PMBSI’s free parameters to optimal values.

We have chosen genetic algorithm to find the optimal values of l
s

, ⌘1, ⌘2,Q automatically. This decision was justified by
the character of the search space with many local minima. Genetic algorithms perform a parallel search and thus have the
ability to escape local minima.

The solution (the chromosome) is a set of real valued parameters, namely [l
s

, ⌘1, ⌘2,Q ]. For every time series we have di-
vided the data set into two parts, the training set and the validation set. The training setwas used for testing the performance
of PMBSI with the given parameters. MAE on the training set corresponded to the fitness of the particular solution.

So far we have explained the encoding of the individuals and the calculation of the fitness function. We have set con-
straints on the parameters to desirably limit the search space. The initial populationwas generated randomly from the given
intervals. Then fitness of the initial population was calculated.

Tournament selection was used. Two parent individuals were selected in two separate N-ary tournaments. Using
crossover andmutation operators a single offspringwas produced. The chromosome of the offspringwas checkedwhether it
satisfies the constraints and if not the chromosome was repaired so that the out of bounds values were set to the respective
maximal or minimal values of given parameters. Fitness of the offspring was calculated. The new individual was inserted in
a list representing the new generation and the process was repeated until the list had the same number of individuals as the
actual generation. Then certain number of the fittest individuals of the actual generation replaced theweakest individuals of
the new generation (elitism) and the new generation became the actual generation. The process was repeated until the stop
criterion was reached. The stop criterion was a number of consequent generations when the fitness of the fittest individual
did not improve (no progress).

We have implemented real value crossover. The crossover results in an individual somewhere between the parents but
not in their average. Let us have the parent individuals Ī

a

and Ī

b

and a vector ↵̄ of the same length as the parents comprised
of random numbers from the interval h0, 1i. The offspring Ī

o

was produced:

Ī

o

= ↵̄ ·⇤ Ī
a

+ (1 � ↵̄) ·⇤ Ī
b

where ·⇤ represents the member-wise multiplication of two vectors. Then with the user set probability mutation operator
was applied:

Ī

o

= Ī

o

+ M

r

· �̄

whereM
r

2 h0, 1i is the mutation rate, that is gradually and uniformly being reduced during the evolution and �̄ is a vector
of the same length as the vectors of the individuals comprised of random numbers from the interval h�1, 1i. The mutation
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rate was gradually reduced after each generation with no progress. If the stop criterion was not reached and the mutation
rate reached 0,M

r

was reset to its initial value. Mutation is applied to every new individual.
We have found the parameters of the genetic algorithm (GA) that worked satisfactory through trial and error. GA with

the given setup finds the optimal solution and in a reasonable time. We have then used the same GA parameters for every
PMBSI optimization regardless the given time series:
1. The number of generations with no progress to terminate the GA was set to 50.
2. The population size was set 20.
3. 1% of the fittest parents (the elite) survived.
4. Tournament size was set to 5.
5. M

r

initial value was set to 0.5.

5. Experiments

The experiments we have performed had three goals:
1. to verify that our implementation of the GA reliably finds the optimal PMBSI setting,
2. to compare PMBSI performance with and without the GA optimized parameters and
3. to compare the GA optimized PMBSI to other methods.

We have used artificial and real world data. In addition to the data we have used in the experiments in Ref. [6] (sinusoid
and proprietary daily financial data from 1295 days) we have used the data and the results of the ‘‘NN5 Forecasting
Competition for Neural Networks and Computational Intelligence’’ [19] published at the 2008 International Symposium on
Forecasting, ISF’07. Thus we could evaluate PMBSI on 111 real world time series and compare its performance to a number
of methods. All 111 time series contain 775 values, of which the last 56 are necessary to predict. We have used two error
measures; MAE and symmetric mean absolute percentage error (SMAPE), defined as:

MAE = 1
n

nX

t=1

|
A

t

� F

t

| , (14)

SMAPE = 100
n

nX

t=1

0.5
|
A

t

� F

t

|
|
A

t

| � |
F

t

| , (15)

where n is the number of samples, A
t

is the actual value and F

t

is the forecast value.
Each time-series was divided into three subsets: training, evaluation and validation data. The time ordering of the data

wasmaintained; the least recent datawere used for training, themore recent data were used to evaluate the performance of
the particular model with the given parameters’ setting. The best performing model on the evaluation set (in terms of MAE)
was chosen and made forecast for the validation data (the most recent) that were never used in the model optimization
process.

In our previous work [6] we have found the optimal PMBSI parameters by trying all combinations of parameters l
s

and Q

(with ⌘1, ⌘2 = 0) sampled from given ranges with a sufficient sampling rate. This slow process enabled us to compare the
GA optimized parameter to what we consider the optimal parameters.

We have constructed the comparative SVM models so that the present value and a certain number of the consecutive
past values of the time series comprised the input to the model. The input vector is a time windowwith the length l

tw

and it
is the equivalent of the length of the string map l

s

.

5.1. Experimental results on the artificial time-series

We have used a single period of a sinusoid sampled by 51 regularly spaced samples. The positive half of the period was
used for training and evaluation. The negative half was used for validation. For PMBSI the time series was shifted above zero
by adding a positive constant. The constant was then subtracted from the forecast. 1, 2 and 3 step PMBSI forecasts with
the parameters l

s

, ⌘1, ⌘2,Q genetically optimized were compared to linear SVMwith linear kernel. PMBSI performs well in
one step predictions but for multiple steps predictions its performance drops rapidly. Therefore, iterated prediction using
the one step prediction model was made, improving the PMBSI results significantly. Table 1 shows the experimental results
and the comparison with the results from Ref. [6]. Errors on evaluation and validation sets are reported. The best results are
highlighted.

Table 2 shows the optimal settings found for PMBSI.We report the number of generations and the timeneeded to discover
the optimal settings. The time in seconds is only for illustration; it corresponds to the processing time on a standard notebook
as of 2015.

Fig. 2 shows evolution of MAE for 2 steps prediction on the evaluation and validation sets through time. We have
concluded that the genetic algorithm is capable to find optimal PMBSI settings close to the settings found by thorough
sampling reported in Ref. [6]. The parameters ⌘1, ⌘2 did not influence the resulting accuracy significantly. Again, the quality
of PMBSI single step prediction was superior to multistep predictions so iterated prediction was more accurate.

Fig. 3 shows the actual predictions of PMBSI 3 steps ahead on the artificial time series.
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Table 1

Experimental results on artificial time-series.

Method lpr MAE eval. MAE valid. SMAPE valid.
[6] EA optim [6] EA optim [6] EA optim

PMBSI
1 0.000973 0.000278 0.002968 0.002197 8.838798 8.656631
2 0.006947 0.001416 0.034032 0.013792 14.745538 11.065498
3 0.015995 0.004247 0.161837 0.061837 54.303315 25.692156

Iterated PMBSI
1 – – – – – –
2 0.003436 0.001057 0.011583 0.009102 10.879313 10.101545
3 0.008015 0.002455 0.028096 0.023102 14.047025 12.635537

SVM
1 0.011831 0.007723 10.060302
2 0.012350 0.007703 10.711573
3 0.012412 0.007322 11.551324

Naive forecast
1 – 0.077947 25.345352
2 – 0.147725 34.918149
3 – 0.207250 41.972591

Table 2

The GA optimized settings for PMBSI.

lpr L

s

Q ⌘1 ⌘2 No. of generations Time (s)

1 2.0 0.01 0.96 �0.2418061866 155 57.2
2 3.0 0.01 0.96 �0.1523626591 208 81.1
3 5.0 0.01 0.96 �0.3820427543 482 189.4

Fig. 2. Evolution of MAE on validation and evaluation sets through time.

5.2. Experimental results on the financial time-series

The proprietary financial time-serieswas divided into subsets so that themost recent 40% of the datawas used for valida-
tion and the remaining data were used for training/evaluation divided in the ratio of 6/4.While extrapolation of the sinusoid
is a simple task the financial time-series was highly non-linear and chaotic. Predictions 1–10 steps ahead were made.

Table 3 shows the optimal settings found for PMBSI in the experiment on financial data. The parameters l
s

,Q influence the
final solution the most. Interestingly, the number of invalid predictions (NaN) increased for longer predictions. We search
for the explanation of this behavior. Table 4 shows a selection of the experimental results. The results of the best performing
models are highlighted. The performances of the methods did not differ significantly to each other and to the naïve forecast.
We attribute that to the chaotic character of the forecasted time series. Considering MAE, GA again found near optimal
parameters making direct predictions almost as accurate that the iterated predictions.

5.3. Experimental results on the time-series from ‘‘NN5 forecasting competition for neural networks and computational

intelligence’’

The NN5 [19] competition gave us the data and the benchmarks to compare the PMBSI method. The competition was
attended by 8 statistical methods and 19 methods of artificial intelligence. The data consists of 2 years of daily cash money



686 M. Bundzel et al. / Physica A 444 (2016) 680–688

Fig. 3. Prediction of the artificial time series by PMBSIwith GA optimized parameters 3 steps ahead compared to the actual data and the iterated prediction.

Table 3

Optimal settings for PMBSI.

lpr L

s

Q ⌘1 ⌘2 NaN (%) gen Time (s)

1 20 0.01 0.96 0.93398 1.6484 281 11002.7
2 24 0.3833823 0.837201 0.96 1.8913 40 373.7
4 19 17.095816 0.837166 0.96 11.3994 107 865.9
6 20 24.551452 0.551884 0.96 15.6028 80 605.9
8 20 23.786910 0.241268 0.536606 27.3875 113 648.8

10 12 21.696502 0.368874 0.010192 22.1524 128 381.3

Table 4

Experimental results on financial time-series.

Method lpr MAE eval MAE valid SMAPE valid
[6] EA optim [6] EA optim [6] EA optim

PMBSI

1 0.023227 0.024094 0.023595 0.023799 7.380742 7.505595
2 0.037483 0.034083 0.036335 0.033463 11.378275 10.442204
4 0.048140 0.045598 0.046381 0.044731 14.876330 14.341023
6 0.054556 0.051771 0.049755 0.052516 16.094349 17.196778
8 0.057658 0.056242 0.056097 0.058517 18.546008 19.243273

10 0.060192 0.058841 0.058216 0.054138 18.752986 18.004554

Iterated PMBSI

1 – – –
2 0.032706 0.034302 0.031940 0.033170 9.953547 10.375175
4 0.043134 0.047085 0.042414 0.045690 13.250729 14.130408
6 0.049916 0.056509 0.047784 0.054769 15.102693 16.930280
8 0.055326 0.065350 0.051355 0.062976 16.306971 19.394236

10 0.057802 0.072621 0.052353 0.070780 16.552731 21.428264

SVM

1 0.021383 0.025546 8.046289
2 0.027721 0.031878 10.046793
4 0.036721 0.039702 12.578553
6 0.041984 0.044450 14.157343
8 0.044525 0.047175 15.036534

10 0.046166 0.050236 15.898355

Naïve forecast

1 0.023273 7.287591
2 0.031486 9.822408
4 0.041811 13.078883
6 0.047238 14.958371
8 0.050788 16.148619

10 0.051923 16.428804

demand at various automatic tellermachines at different locations in England. The datamay contain a number of time series
patterns includingmultiple overlying seasonality, local trends, structural breaks, outliers, zero andmissing values etc. These
are often driven by a combination of unknown and unobserved causal forces driven by the underlying yearly calendar, such
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Fig. 4. Example of PMBSI prediction for NN5 time series no. 10, SMAPE = 19.75.

Table 5

Ranking of PMBSI with GA optimized parameters in NN5 competition.

Average SMAPE Ranking Ranking AI methods Ranking statistical methods Competitor

19.9 1 1 Wildi
20.4 2 1 Andrawis
20.5 3 2 Vogel
20.6 4 3 D’yakonov
21.1 5 2 Noncheva
21.7 6 4 Rauch
21.8 7 5 Luna
21.9 8 3 Lagoo
22.1 9 6 Wichard
22.3 10 7 Gao
23.7 11 8 Puma-Villanueva
24.1 12 4 Autobox (Reilly)
24.5 13 5 Lewicke
24.8 14 6 Brentnall
25.3 15 9 Dang
25.3 16 10 Pasero
25.3 17 11 Adeodato
26.8 18 12 Not published
27.3 19 13 Not published
28.1 20 14 Tung
28.8 21 7 Naive Seasonal
33.1 22 15 Not published
36.3 23 16 Not published

38.8 PMBSI

41.3 24 17 Not published

45.4 25 18 Not published
48.4 26 8 Naive level
53.5 27 19 Not published

as reoccurring seasonal periods, bank holidays, or special events of different length andmagnitude of impact, with different
lead and lag effects.

We have constructed a 56 steps ahead PMBSI predictors for each of the 111 competition time series. We have considered
using iterated predictions but the performance was inferior to the direct prediction because the error has accumulated too
much over the 56 prediction steps. We have also considered building 56 PMBSI predictors for each time series (1 step, 2
step . . . 56 step ahead) but this has proven to be too time consuming when GA optimization has to be employed for each
predictor. However, this approach would certainly improve the accuracy for shorter predictions. Fig. 4 shows an example
of the 56 forecasted values for one of the competition time series. We consider positive that occurrence of the most of the
peaks was matched correctly.

On the other hand, regarding the average SMAPE over the 111 time series equal to 38.8 was not impressive. The average
SMAPE in the competition was 27.9 and PMBSI ranked low in Table 5. We are aware of the PMBSI’s weak performance in
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multistep predictions althoughwith GA optimized parameters it is on the level of iterated prediction. It is a part of the future
work to build separate predictors for each step and each NN5 time series to see if there will be a significant improvement
in the performance. Also, improvements are possible in the design of the weightW (h) (Eq. (9)).

6. Conclusion

We have proposed a novel prediction method based on string invariants. This method does not require training in
the traditional sense. Four parameters must be set. We have implemented genetic algorithm for optimization of these
parameters. We have proven that PMBSI is a viable forecast method and that it works well for a wide range of parameters.
We have also confirmed that GA is capable to regularly find the optimal parameters. PMBSI was tested on artificial and real
world data. These tests showed that although it is simple to construct a PMBSI model its accuracy must be improved. The
future work includes improvement of a formula for calculation of a weight parameter and further research of the underlying
principles of the method. We would like also to make some bridge between string prediction model described in Ref. [20]
and the string invariant with optimization of the parameters present in this paper.

Acknowledgments

This publication is partially the result of the Project implementation: ‘‘University Science Park TECHNICOM for Innovation
Applications Supported by Knowledge Technology’’, supported by the Research & Development Operational Programme
funded by the ERDF, ITMS: 26220220182. The work was supported by the VEGA Grant No. 2/0037/13. R. Pincak would like
to thank the TH division in CERN for hospitality. I would like to express my gratitude to Librade (www.librade.com) for
providing access to their flexible platform, team and community. Their professional insights have been extremely helpful
during the development, simulation and verification of the algorithms.

References

[1] J. Polchinski, String Theory, Cambridge University Press, 1998.
[2] D. McMahon, String Theory Demystified, The McGraw-Hill Companies, Inc., 2009.
[3] Zwiebach, A First Course in String Theory, Cambridge University Press, 2009.
[4] D. Horvath, R. Pincak, From the currency rate quotations onto strings and brane world scenarios, Physica A 391 (21) (2012) 5172–5188.
[5] M. Bundzel, T. Kasanicky, R. Pincak, Experimental analysis of the prediction model based on string invariants, Comput. Inform. 32 (6) (2013)

1131–1146.
[6] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986) 307–327.
[7] R. Engle, Autoregressive conditional heteroskedasticity with estimates of United Kingdom inflation, Econometrica 50 (1982) 987–1008.
[8] M. Deistler, The structure of ARMA systems in relation to estimation, in: P.E. Caines, R. Hermann (Eds.), Geometry and Identification, Proceedings

of APSM Workshop on System Geometry, System Identification, and Parameter Estimation, Systems Information and Control, Vol. 1, Math Sci Press,
Brookline, MS, 1983, pp. 49–61.

[9] G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1970.
[10] F.E.H. Tay, L. Cao, Application of support vector machines in financial time-series forecasting, Omega 29 (2001) 309–317.
[11] J. Kamruzzaman, R. Sarker, Forecasting of currency exchange rates using ANN: a case study, in: Proc. IEEE Intl. Conf. on Neur. Net. & Sign. Process.,

ICNNSP03, China, 2003.
[12] W.-H. Chen, J.-Y. Shih, S. Wu, Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock

markets, Int. J. Electron. Finance 1 (1) (2006) 49–67.
[13] E. Egrioglu, PSO-based high order time invariant fuzzy time series method: Application to stock exchange data, Ecol. Modell. 38 (February) (2014)

633–639.
[14] C.-H. Chenga, L.-Y. Weib, J.-W. Liuc, T.-L. Chend, OWA-based ANFIS model for TAIEX forecasting, Econ. Modell. 30 (January) (2013) 442–448.
[15] L.-Y. Wei, A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX, Econ. Modell. 33 (July) (2013) 893–899.
[16] Michael C. Münnix, Takashi Shimada, Rudi Schäfer, Francois Leyvraz, Thomas H. Seligman, Thomas Guhr, H. Eugene Stanley, Identifying States of a

Financial Market, Scientific Reports, vol. 2, Macmillan Publishers Limited, Article No. 644, 2012/09/10/online, http://dx.doi.org/10.1038/srep00644.
[17] Jed D. Christiansen, Prediction markets: Practical experiments in small markets and behaviours observed, J. Predict. Mark. 1 (1) (2007) 17–41.
[18] J. Wolfers, E. Zitzewitz, Prediction markets, J. Econ. Perspect. 18 (2004) 107.
[19] NN5 forecasting competition for neural networks and computational intelligence. http://www.neural-forecasting-competition.com/NN5/ (accessed

June 2015).
[20] R. Pincak, E. Bartos, With string model to time series forecasting, Physica A 436 (2015) 135–146.

http://www.librade.com
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref1
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref2
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref3
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref4
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref5
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref6
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref7
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref8
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref9
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref10
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref12
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref13
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref14
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref15
http://dx.doi.org/10.1038/srep00644
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref17
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref18
http://www.neural-forecasting-competition.com/NN5/
http://refhub.elsevier.com/S0378-4371(15)00909-7/sbref20

	Using string invariants for prediction searching for optimal parameters
	Introduction
	State of the art
	Prediction model based on string invariants
	Evolutionary optimization of PMBSI free parameters
	Experiments
	Experimental results on the artificial time-series
	Experimental results on the financial time-series
	Experimental results on the time-series from ``NN5 forecasting competition for neural networks and computational intelligence''

	Conclusion
	Acknowledgments
	References




