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Abstract 

In this study, we construct financial networks in which nodes are represented by assets and where 

edges are based on long-run correlations. We construct four networks (complete graph, a minimum 

spanning tree, a planar maximally filtered graph, and a threshold significance graph) and use three 

centrality measures (betweenness, eigenvalue centrality, and the expected force). To improve risk-

return characteristics of well-known return maximization and risk minimization benchmark portfolios, 

we propose simple adjustments to portfolio selection strategies that utilize centralization measures 

from financial networks. From a sample of 45 assets (stock market indices, bond and money market 

instruments, commodities, and foreign exchange rates) and from data for 1999 to 2015, we show that 

irrespective of the network and centrality employed, the proposed network-based asset allocation 

strategies improve key portfolio return characteristics in an out-of-sample framework, most notably, 

risk and left-tail risk-adjusted returns. Resolving portfolio model selection uncertainties further 

improves risk-return characteristics. Improvements made to portfolio strategies based on risk 

minimization are also robust to transaction costs. 
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1. Introduction  

Portfolio selection is a key concept of modern finance theory. Since the seminal work of 

Markowitz (1952), a vast amount of literature has focused on developing new concepts and techniques 

for more effective portfolio diversification. This includes Black and Littermanôs (1991) model, which 

enables investorsô specific views on asset returns to be included in portfolio optimizations; the so-

called post-modern portfolio theory (Rom and Ferguson, 1994), which recognizes downside risks 

other than normal distributions for patterns of returns; the strand of literature that considers higher-

order moments of returns in optimization procedures (e.g., Kane, 1982; de Athayde and Fl¹res, 2004); 

and improved covariance matrix estimators (Tola et al., 2008; Pantaleo et al., 2011).  

In this paper, we explore the potential benefits that information on the interconnectedness of 

returns offers across five asset classes: stocks, commodities, currencies, bond and money market 

instruments. Motivated by the recent contribution in the literature (Peralta and Zareii, 2016), our 

contribution lies in proposing and comparing asset allocation strategies that exploit the topological 

structure of a network of relationships across assets. Our analysis is conducted over four steps. First, 

we construct the return series for each asset and calculate correlations among returns. Second, we 

construct various time-varying correlation networks and quantify the relative importance of assets 

within the network based on their interconnectedness, i.e., the centrality measure. Third, we construct 

investment portfolios: either benchmark portfolios based on modern portfolio theory or their 

alternative versions augmented by information on network topology. Here, we propose a simple 

constraint in portfolio optimization that requires weights to respect the ordering imposed by centrality 

measures. Fourth, we focus on various measures of the constructed portfolios to evaluate their 

performance. 

Our findings suggest that our alternative network-based asset allocation strategies improve risk-

return profiles relative to the benchmark portfolio. Moreover, the improved risk-return profile is robust 

with respect to transaction costs, which is especially important from a practical point of view. 

Our study is closely related to the work of Peralta and Zareii (2016), who were the first to 

theoretically prove the negative relationship between the centrality of assets within a financial network 

and optimal weights under the Markowitz framework. As a result, the centrality measures of 

constructed networks can be used to facilitate portfolio selection. This has also been demonstrated 

empirically by means of in-sample and out-of-sample analyses of network-based investment strategies, 

which may improve portfolio performance. As these authors note, much of the network-related 

research lacks specific practical applications in terms of portfolio selection and is more descriptive in 

nature. We fill this gap in the literature, and our results clearly show that the constructed network takes 

into account complex relationships between assets beyond those measured by correlations. Our main 

contributions can be summarized in more detail as follows: 

i. When transaction costs are ignored, simple extensions of network-based asset allocation 

strategies generally improve risk-return characteristics. 
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ii. When the goal is to maximize portfolio returns, improved risk and left-tail risk-adjusted 

returns are costly, as they are mitigated by increased turnover and transaction costs. 

iii.  When the goal is to minimize portfolio risks, improved risks and left-tail risk-adjusted 

returns are likely to be retained even when transaction costs are included, as transaction costs 

are lower than those of Markowitzôs respective risk minimization portfolio. 

iv. The network approach appears to improve portfolios irrespective of the employed network 

model or centrality measure used. 

v. The most notable improvements were found with regard to left-tail risk-adjusted returns. 

vi. Resolving portfolio model choice uncertainties by using combination portfolios (where 50% 

of investor wealth is invested in the benchmark portfolio while 50% is invested into a set of 

network-based asset allocation portfolios) leads to improved risk-return characteristics and is 

the recommended approach. 

 

2. Interconnectedness among various asset classes 

As network theory has penetrated the field of finance (e.g., Mantegna, 1999; Mantegna and 

Stanley, 1999; Onnela et al., 2003), several authors have recommended exploiting the benefits of 

networks in portfolio selection. Within this network perspective, financial markets or individual assets 

are perceived as nodes and links among them are usually represented by correlations. As such, 

correlation networks can be used to establish links among numerous asset classes and to specify which 

assets are important in terms of interconnectedness (based on some centrality measure). The 

usefulness of this approach has been supported by Billio et al. (2012) and Diebold and Yilmaz (2014, 

2015), who have already suggested that further research on complex relationships in financial markets 

is headed toward a reliance on network approaches. 

As argued by Baitinger and Papenbrock (2016), interconnectedness as an alternative risk 

concept has thus far attracted very little attention in the field of portfolio management both in theory 

and practice. They show that interconnectedness risk (i) shows only moderate or no connection to 

conventional portfolio optimization inputs and that (ii) active investment strategies based on 

interconnectedness information outperform their conventional counterparts. Kaya (2015) describes 

how networks among asset classes (based on mutual information distance) can be used to measure and 

visualize systemic risk, to enhance diversification and to assist with asset pricing. In building 

diversified portfolios, L·pez de Prado (2016) combines graph theory (hierarchical structure known as 

a tree) and machine learning techniques to address problems of a quadratic optimization procedure 

designed for inequality-constrained portfolio optimization problems (known as the Critical Line 

Algorithm proposed by Markowitz, 1956). Onnela et al. (2003) note that assets of the classic 

Markowitz portfolio are always located on the outer leaves of the correlation-based minimum 

spanning tree. 
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Empirical research has explored potential diversification benefits across different asset classes 

by studying co-movement between asset returns. For example, the relationship among equities and 

bonds was studied in an influential paper by Shiller and Beltratti (1992) who found negative co-

movement between stocks and bonds; many later studies have produced similar findings (e.g., 

Andersen et al., 2007; Baele et al., 2010). These negative stock-bond return correlations are mostly 

described as a ñflight-to-safetyò phenomenon, or can be explained by the ñdiscount factorò, i.e., within 

the context of present value, increase in interest rates impact both the bond and stock prices, but in the 

opposite direction. However, later studies (e.g. Andersen et al., 2007) suggest that the negative stock-

bonds relation holds only during the contractions in the business cycle, while during the expansion this 

relationship is positive. In fact, stock-bond correlations exhibit significant time variation (for a 

persuasive example, see Figure 1 in Baele et al., 2010).  

There are several theoretical reasons explaining mutual dependencies among various asset 

classes. For example, exchange rates and interest rates are closely related via the uncovered interest 

rate parity (Ciner et al., 2013). Moreover, exchange rates and equities should be closely related, as 

changes in currency affect a countryôs trade balance, its output, and thus corporate cash flows. Earlier 

studies usually reported a positive relation between U.S. dollar revaluations and equity returns, but 

again, this relationship might be doubted. Ehrmann et al. (2011) found that whereas U.S. equity 

markets do not respond to exchange rate movements, the euro area markets rise by a substantial 

amount following an appreciation of the euro. Further, a depreciation of the dollar leads to an increase 

in U.S. bond yields and a reduction in euro bond yields. 

The same ambiguity applies for the oil and equity relationship; an increase in oil prices driven 

by an increase in demand in the world economy should be associated with positive stock price 

movements (Park and Ratti, 2008). On the other hand, the results of Cunado and de Gracia (2014) 

suggest the existence of a negative and significant impact of oil price changes on stock market returns, 

mostly driven by oil supply shocks. With respect to exchange rates, oil-exporting countries (oil-

importing) could experience exchange rate appreciation (depreciation) when oil prices rise (fall) 

(Krugman, 1980). More recently, Reboredo et al. (2014) showed that in the pre-crisis period oil price 

changes had a weak and negative effect on exchange rates (and vice versa). Thus, after the recent 

global financial crisis, there is some evidence of negative interdependence between oil prices and 

exchange rates. Reboredo (2013) also examined price co-movements between oil and gold. His 

analysis revealed that gold cannot hedge against oil, but gold can act as a ñsafe havenò against extreme 

oil price movements. 

The literature on finding the so-called ñsafe havenò assets, which should provide investors the 

full benefits of diversification, is quite extensive. The most common candidate to be considered a safe 

haven is usually gold. Baur and Lucey (2010) studied constant and time-varying relations between 

U.S., U.K. and German stock and bond returns (MSCI indices) with respect to gold returns. Their 

results indicate that gold is not a hedge against bonds; however, for stocks, it is a hedge as well as a 
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safe haven (uncorrelated or negatively correlated asset in extreme market conditions) ï but only for a 

limited time (around 15 trading days). Baumºhl and Ly·csa (2017) showed that the safe haven 

properties of gold have a changing nature. They examined the quantile dependence among gold and 

the U.S. stock market sector indices over the period of 1999 ï 2016. From a short-term perspective (up 

to 10 days) after the crisis, gold acted as a safe haven for all sectors except Industrials. From the same 

short-term perspective but in the period before the financial crisis, they did not find any quantile 

dependence, and gold could be considered a safe haven for most of the sectors. 

Grisse and Nitschka (2015) analyzed the Swiss francôs diversification properties and found that 

the Swiss franc exhibits safe haven asset characteristics against some currencies but not against other 

major currencies, such as the U.S. dollar and the yen. Fatum and Yamamoto (2016) investigated 

currency safe haven during the recent financial crisis and confirmed that during the global crisis, the 

Japanese yen exhibits the strongest safe haven currency behavior followed by the Swiss franc and then 

the U.S. dollar. Flavin et al. (2014) assessed a number of safe haven assets from the perspective of an 

equity investor and provide evidence in favor of choosing either gold or the longer-dated bond as a 

safe haven asset. Both of these assets delivered risk reduction benefits during the times of stock 

market decline. In contrast, shorter-dated bonds do not provide such benefits as they are more prone to 

systemic risk. 

Mensi et al. (2013) examine return and volatility links among the S&P500 and commodity price 

indices for energy, food, gold, and beverages from 2000 to 2011 and find that the gold and oil markets 

appear to be strongly influenced by U.S. stock market volatility. Nazlioglu et al. (2013) study 

volatility transmission between oil and selected agricultural commodity prices (wheat, corn, soybeans, 

and sugar) from 1986 to 2011. Their results from variance causality tests differ depending on the 

periods examined but reveal significant volatility spillovers from the oil market to the commodity 

markets (except for sugar) during the post-crisis period. Barun²k et al. (2015) analyze volatility 

spillovers on the oil commodity market over the 1987ï2014 period and show that spillovers increase 

after 2008. However, they also show that relatively balanced and low asymmetries in volatility 

spillovers correlate well with the ongoing financialization of oil commodities and the advent of 

heightened oil exploration and production in the U.S. In addition, Barun²k et al. (2016) analyze most 

liquid U.S. stocks in seven sectors and offer ample evidence of the asymmetric connectedness of 

stocks at the disaggregate level. The asymmetries in spillovers propagate in such a way that although 

negative spillovers are often of substantial magnitude, they do not strictly dominate positive spillovers. 

As was the case in the commoditiesô markets, the overall intra-market connectedness of U.S. stocks is 

shown to have increased substantially over the recent financial crisis. 

The overview is far from exhaustive, but it illustrates a key point. Regardless of asset class 

pairs, methodology and/or sample period, relationships seem to vary over time. Interconnectedness as 

an alternative risk concept should thus be incorporated in portfolio optimization. 
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3. Data and methodology 

As we allow for diversification across asset classes, we must address the ways in which returns 

are constructed so that the proposed allocation truly reflects the returns an investor would obtain (this 

is particularly important when mixing stocks with bonds). We define the rules for portfolio 

construction that would represent our investment strategies. These strategies include classical 

approaches to portfolio construction, which may serve as a benchmark but also strategies that are 

based on the topological properties of underlying time-varying correlation-based networks. 

Table 1 Descriptive statistics of weekly asset returns 

 Mean St.dev. Skew Kurt AC(1) AC
2
(1) Obs 

Stocks        

BVSP 0.185 3.889 -0.409 5.768 -0.079 0.173 886 
DAX 0.069 3.322 -0.640 7.763 -0.042 0.194 886 
FTSE100 0.004 2.491 -1.064 14.242 -0.085 0.090 886 
KOSPI 0.144 3.610 -0.503 6.764 -0.081 0.314 886 
MERV 0.319 4.829 -0.408 7.146 0.035 0.168 882 
N225 0.011 3.024 -1.154 11.428 -0.012 0.120 886 
SMI 0.012 2.662 -1.107 16.647 -0.161 0.278 886 
SP500 0.059 2.514 -0.716 9.341 -0.080 0.284 886 
SSE 0.109 3.472 -0.084 5.072 0.068 0.139 878 
TSE 0.074 2.471 -0.919 9.800 -0.114 0.404 886 
TWII  0.005 3.214 -0.275 6.060 -0.032 0.081 873 

Commodities        

Brent 0.122 4.703 -0.799 6.656 -0.003 0.230 886 

Cocoa 0.124 4.324 -0.036 3.984 0.019 0.050 886 

Copper 0.109 3.811 -0.727 8.711 -0.043 0.130 886 

Cotton -0.118 4.071 0.258 4.914 0.024 0.068 858 

Gold 0.130 2.532 -0.338 6.596 0.025 0.394 886 

NatGas 0.012 7.446 0.296 6.472 -0.041 0.262 886 

Silver 0.112 4.232 -0.823 6.962 -0.022 0.127 886 

Currencies        

AUD_USD -0.017 1.805 1.534 14.504 -0.030 0.246 886 

CAD_USD -0.011 1.241 0.926 9.655 -0.025 0.242 886 

CHF_USD -0.039 1.625 -1.126 21.705 -0.031 0.029 886 

CNY_USD -0.028 0.213 2.130 55.105 0.044 0.012 886 

EUR_USD 0.008 1.400 0.250 3.867 0.030 0.052 886 

GBP_USD 0.009 1.287 0.846 9.439 -0.030 0.213 886 

JPY_USD 0.009 1.436 -0.428 5.373 -0.079 0.168 886 

NOK_USD 0.016 1.619 0.377 3.853 -0.031 0.121 886 

Money/bond market        

bAAA 0.044 1.849 0.110 5.489 -0.130 0.094 886 

bBBB 0.029 1.536 -0.399 4.701 -0.070 0.213 886 

bCPF_1M 0.173 4.063 2.816 40.380 -0.185 0.364 884 

bCPNF_1M 0.197 2.995 3.102 25.373 -0.026 0.194 885 

bEMEA_corp 0.180 0.964 -3.796 53.937 0.402 0.342 886 

bEMER_corp 0.064 2.867 -1.361 10.037 0.281 0.311 886 

bEMER_corp_high 0.079 1.712 -1.327 10.058 0.281 0.347 886 

bEMER_EURO_corp 0.089 2.645 1.032 26.837 0.220 0.064 886 

bEUR_HY 0.074 2.840 -0.464 8.686 0.214 0.092 886 

bGER_1Y 0.220 3.045 1.230 12.860 0.018 0.198 886 

bGER_5Y 0.190 3.444 -0.336 6.964 -0.073 0.172 886 

bGER_20Y 0.110 2.556 -0.469 9.603 -0.012 0.320 886 

bGER_corp 0.052 2.364 -0.680 14.692 -0.023 0.058 886 
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bJPN_1Y 0.060 1.548 1.399 18.929 0.097 0.090 886 

bJPN_5Y 0.117 2.844 -0.055 6.366 -0.040 0.241 886 

bJPN_20Y 0.085 2.095 -1.016 11.254 0.011 0.290 886 

bUS_1Y 0.167 2.975 0.716 10.880 0.032 0.233 886 

bUS_5Y 0.090 3.748 -0.432 4.561 -0.068 0.089 886 

bUS_20Y 0.067 2.440 -0.108 4.634 -0.090 0.118 886 

Notes: AC(1) is the value of the first-order autocorrelation coefficient of the original series. AC2(1) is the value of the first-

order autocorrelation coefficient of squares of the original series. 

 

3.1 Data and return series construction 

To allow for cross-asset allocation, our sample encompasses stock indices, bonds, commodities 

and selected foreign exchange rates (see Appendix Table A.1) with a total of M = 45 assets (stock 

market indices, bond and money market instruments, commodities, and foreign exchange rates). The 

daily return data cover a period from January 1999 to December 2015. Due to non-trading, the number 

of daily observations for each asset varies from 2614 to 4458. In our analysis, we focus on weekly 

data, and therefore, given the price Pi,w of asset i at the end of the week w, the continuous weekly 

return was calculated as r i,w = log(Pi,w/Pi,wï1). When the given asset is a bond with a yield yi,w, the 

return is calculated as r i,w = log((1+yi,wï1)/(1+yi,w)). In several cases, less than 3 daily observations 

were available for a given week of a given asset. Such weeks were removed from the given asset time 

series of weekly returns. 

 

3.2 Long-run correlat ion (variance-covariance matrix) 

After creating the return series, we constructed estimation windows for 12 months that were 

rolled one week ahead, resulting in w = 1, 2, é, N overlapping estimation windows. For each 

estimation window, we have calculated the long-run correlation coefficient ɟi,j,w for any two return 

series r i,w and r j,w, where w denotes that a given observation belongs to a given estimation window, i.e., 

that for calculation data from the 52 week prior to w are used. Between two assets i and j, the weeks 

for which returns are recorded may differ, and prior to the calculation of ɟi,j,w, series r i,w and r j,w were 

synchronized via listwise deletion. 

To measure the dependence between assets, we decided to use the long-run correlation 

coefficient, which is based on the estimator of the heteroskedasticity and autocorrelation consistent 

variance-covariance matrix introduced by Andrews (1991). This choice was guided by the fact that 

return series are subject to mild levels of autocorrelation and to heteroskedasticity (see Table 1). We 

also use the long-run estimator, as it is much simpler to use in practice.
1
 

For a given sample size T, Andrewsô (1991) estimate takes the following form:  
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 We also experimented with partial correlations as a measure of dependence, but the overall results remained 

practically the same. These results are available upon request. 
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and where t = 1, 2, é, T, Zt = [r i,t, rj,t]
T
, and k(.) is the quadratic spectral kernel weighting function that 

together with bandwidth parameter B weights lagged variances and co-variances. In our empirical 

work, we made an arbitrary choice for the bandwidth parameter to be of size 3, which corresponds to 3 

weeks that attain the largest weight. The quadratic spectral kernel function is defined as: 

( )
( )2 2

sin 6 / 525
cos 6 / 5

12 6 / 5

xm
k x x

B x x

p
p

p p

å õå õ
= = -æ öæ ö

ç ÷ ç ÷
 (3) 

Finally, the long-run correlation is estimated as: 
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A significance test on the long-run correlation coefficient can be performed using Panopoulou et al.ôs 

(2010) method, where the test statistic for H0: ɟi,j = 0, is defined as: 

,
Ĕ

i j

T

B
r  (5) 

and where under the null hypothesis, it follows a standard normal distribution. As the test is performed 

between all possible pairs of 45 assets, we use a rather strict significance level of 0.01/(M(Mï1)/2) 

corresponding to the Bonferroni adjustment. 

 

3.3 Networks 

The calculated correlation coefficients have been used as a basis for the construction of time-

varying networks, which are in turn used in portfolio optimization. More specifically, a network at 

time w = 1, 2, é, N is a graph Gw(V,Ew) defined by a set of vertices V = {1, 2, é, M} that corresponds 

to individual assets and a set of edges Ew Ṗ V Ĭ V. Each edge may be assigned a non-negative weight, 

expressing the ñdistanceò between the vertices. Distances are calculated from long-run correlation 

coefficients ɟ as )1(2 r-=d . The larger the distance the less interconnected asset returns are. 

Based on which edges are retained, in the next subsections, we discuss several approaches to the 

construction of set Ew. 

 

3.3.1 Complete graph 

As correlations between the returns of any two assets can be calculated at any time, the resulting 

structure forms a so-called complete graph in which any two vertices are connected by an edge. 

Although the edge weights (given by correlations) can vary, the resulting structure is rather 

uninteresting, at least from a topological point of view, as every asset is linked to all others regardless 
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of the strength of the relationship. A complete graph does not limit the portfolio optimizer in any way 

with respect to constraints placed on the topology of a network. 

In financial network studies, one typically does not analyze complete graphs, but rather a 

suitable subgraph: a network of the same number of vertices that retains only certain edges that are 

considered relevant. 

In our analysis, we use three different types of subgraphs, namely, a minimum spanning tree, a 

planar maximally filtered graph, and a threshold significance graph, which are described further in the 

following subchapters. To obtain a better perspective, we also plot these subgraphs in Figures 1ï3 

using our full sample. Based on eigenvalue centrality, the London stock market appears to be the one 

with the most connections in all three subgraphs. Although exclusions of some edges according to 

different network creation rules do not have straightforward economic meanings, in our figures, it is 

quite clear that vertices are clustered into asset class groups. This applies to all three of the subgraphs 

considered. 

 

 

Figure 1 Minimum spanning tree of individual asset return correlations for the full sample 

Notes: Vertex sizes and colors are based on eigenvalue centrality, i.e., the higher the size or the darker the color of the 

vertex, the higher is the centrality of the given vertex (asset). Edges between vertices represent relationships retained in the 

minimum spanning tree. Assets that have many edges and are centralized in the graph are considered as more interconnected 

ï an undesirable property for asset allocation problem. For example, FTSE 100 is highly interconnected not only among 

stock market indices but also within the whole network. On the other hand, gold or the CNY/USD exchange rate are less 

interconnected with the rest of the assets. 
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3.3.2 Minimum spanning tree 

A widely used and well-established subgraph is the so-called minimum spanning tree (MST), 

which was introduced to financial contexts by Mantegna (1999). A spanning tree is an acyclic 

connected subgraph containing all vertices (a graph with no circles) with a path connecting any two 

vertices. Requirement of a minimal such spanning tree refers to the values of edge weights. To satisfy 

the conditions of edge weight non-negativity, which allows for their interpretation as distances, 

Mantegna (1999) proposed a nonlinear decreasing transformation of correlations to be used for 

weights( ))1(2 ,, jijid r-= . As the transform is decreasing, higher correlations translate into smaller 

distances. MST is thus a spanning tree with a minimum sum of weights of retained edges. This 

supports the notion of keeping only the most important edges in a graph intact. In a network of M 

vertices, an MST retains precisely Mï1 edges. The MST is extracted from the complete graph using 

Kruskalôs (1956) algorithm. 

 

Figure 2 Planar maximally filtered graph of individual asset return correlations for the full sample 

Notes: Vertex sizes and colors are based on eigenvalue centrality, i.e., the higher the size or the darker the color of the 

vertex, the higher is the centrality of the given vertex (asset). Edges between vertices represent relationships retained in the 

planar maximally filtered graph. As before, FTSE 100 is interconnected among stock market indices. Among bonds, it is the 

20-year U.S. Treasury bond, while among commodities, it is Copper. 
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3.3.3 Planar maximally filtered graph 

Although the MST presents a frequently used subgraph, its simplicity may prove limiting. As a 

complete (unoriented) graph on M vertices has M(M ï 1)/2 edges, its reduction to an MST might 

translate into a loss of some important network features. To allow for a richer set of network 

structures, Tumminello et al. (2005) proposed using a planar maximally filtered graph (PMFG) that 

replaces the constraints of a spanning tree with constraints of forming a planar graph. These subgraphs 

may include cycles or complete subgraphs of up to 4 vertices and they are thus more suitable for 

describing highly interconnected networks. A PMFG on M vertices has precisely 3M ï 6 edges, which 

is roughly three times as much as a minimum spanning tree. In addition, an MST is a subgraph of a 

PMFG; therefore, a PMFG includes all of the edges of an MST and may be thought of as its extension. 

 

 

Figure 3 Threshold significance graph of individual asset return correlations for the full sample 

Notes: Vertex sizes and colors are based on eigenvalue centrality, i.e. the higher the size or the darker the color of the vertex, 

the higher is the centrality of the given vertex (asset). Edges between vertices represent relationships retained in the 

threshold significance graph. Additionally, the threshold significance graph revealed the central role of the FTSE 100 among 

all assets. 
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3.3.4 Threshold significance graph 

Rather than creating topological constraints on the interconnectedness of assets, Tse et al. 

(2010) considered networks wherein only correlations above a threshold value were used, as 

topological constraints in MST and PMFG have unclear statistical and economic meaning (VĨrost et 

al., 2015). We therefore also considered threshold networks where only edges that were statistically 

significant remained in the network. More specifically, when the estimate of ɟi,j was insignificant from 

zero, the estimate of ɟi,j was set to 0. 

 

3.4 Centrality measures 

To describe the topology of the financial networks, we use several measures of the relative 

importance of assets. We focus mainly on centrality measures, namely, betweenness and eigenvalue 

centrality. Each centrality represents a different measure, thus resulting in a numerical nodal attribute 

describing the importance of a node relative to others. The simplest centrality measure, which we do 

not use to construct our portfolios, is the degree centrality, which assigns each vertex to the number of 

incident edges; thus, the higher the degree of centrality, the more interconnection a vertex has with 

remaining vertices in a network.  

Betweenness represents a different centrality measure that counts the number of times a vertex 

lies on the shortest path between other vertices in the network. The intuition behind betweenness is as 

follows. Assume that we wish to calculate the measure for a vertex v  ɴV. For any two distinct vertices 

other than v, say s, t  ɴV, the shortest path may be deemed the most direct path information (or return 

shocks) may take to spill over between s and t. As the distance between vertices is given by edge 

weights, which are a decreasing function of their mutual correlations, shortest paths are routes along 

the highest correlations to reach s from t (and vice versa). Depending on the network structure, there 

may be more than one shortest path between any two vertices. For example, in an MST, there is 

always only one shortest path; in a PMFG, there will always be at least one such path, and in a 

complete graph, shortest paths will always reduce to a single edge, as all vertices are adjacent. To 

calculate betweenness for v, one counts the fraction of times a shortest path between s and t contains v. 

More formally, let the number of shortest paths between s and t be ns,v,t  ɴᴓ and let ns,t  ɴᴓ be the total 

number of shortest paths between s and t. The betweenness for v is then calculated as: 
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In cases of betweenness, vertices with high centrality present important nodes in the sense that 

they mediate the interconnection between other vertices and act as spillover hubs.  

Another centrality measure we use in this study is eigenvalue centrality. Here, the relative 

importance of a vertex not only depends on the number of connections a vertex has, as their quality 
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also becomes relevant. As is the case in social networks, some vertices may be more significant than 

others, and in turn connections to these vertices are more important than connections to peripheral 

vertices. Being connected by a few links to a small number of important vertices may be more relevant 

than forming a higher number of connections with inconsequential vertices. To capture this idea more 

formally, let At be the adjacency matrix of Gt, that is, an M Ĭ M matrix, where as,t = 1 if there is an 

edge between vertices s and t and where as,t = 0 otherwise. The centrality measure for all vertices is 

obtained by finding the greatest eigenvalue ɚ  ɴᴙ such that for a vector x  ɴᴙM
: 

Axx=l  (7) 

Eigenvalue centrality scores may be extracted as elements of the eigenvector x. Note that for 

(strongly) connected graphs, such as those referenced in this paper, the eigenvector solution is unique 

and positive as a consequence of the Perron-Frobenius theorem. 

As a third possible measure of the relative importance of an asset in a network, we use the 

expected force. As Lawyer (2015) argues, classical centrality measures are usually well suited for 

identifying the most important vertices in a network, but their values are not very meaningful for 

other, less important nodes. In our case, when determining portfolio weights depending on centrality 

measures, the importance of all vertices is critical. The expected force is a measure used to describe 

the spreading power of nodes from an epidemiological perspective. In a financial context, this property 

becomes relevant in describing a situation wherein development on some assets spills over to other 

assets or asset classes (as is the case for contagion). From the expected force, it is possible to capture 

two distinct aspects that define the ability of a vertex to spread information through a network. For 

vertices with high spreading power, their force comes from their own interconnectedness (or vertex 

degree). However, vertices with less spreading power may also exhibit high levels of expected force 

when their direct neighbors have high vertex degrees and are thus able to spread information through 

the network structure more quickly. 

In general, we expect the centrality measures to provide additional information to the problem 

of portfolio optimization. The main reason for this belief is the fact that in normal econometric or 

statistical setting, most relationships are captured as bivariate, such as in the case of correlation 

matrices. Network analysis adds a unique perspective on interrelationships: most centrality measures 

are based on paths, rather than bivariate relationships. Shortest paths and their lengths present a form 

of measure of interconnectedness that cannot be replicated by current econometric tools, which makes 

them a potentially useful alternative in problems exploiting dependence structures, as is the case in 

portfolio optimization. 

 

3.5 Portfolio strategies 

Specifications of the optimization problems described in this section are used to calculate 

optimum portfolio weights, thus determining the share of an investorôs capital invested into respective 

assets.  
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When trying to incorporate topological information from financial networks into an 

optimization problem, there are two alternatives: topological information can either become part of the 

objective function and thus become the determinant and measure of suitability of a proposed portfolio 

regarding what an investor deems desirable, or it is possible to include such information as additional 

constraints that a portfolio must satisfy. In this paper, we pursue the second approach only. 

To explain the consequences of this decision, we may consider the interpretation of both 

approaches. Changing the objective function in a portfolio optimization routine might be viewed as 

changing the property the investor desires ï may it be maximum return, minimal volatility or some 

other measure. Changing the constraints on the other hand only limits the feasible set of portfolios that 

are acceptable for an investor.  

The classical mean-variance theory has been derived from maximization of investorôs utility 

approximated by a Taylor-series expansion, which leads to the well-known result of utility increasing 

with the expected return and decreasing with volatility of portfolio returns.  In our approach, we 

follow these classical results and do not make modifications to the objective function, which we 

consider to be valid.  

As for the constraints, several legitimate reasons may exist that motivate a change in the feasible 

set of portfolios. As a simple example, an investor might wish to control the number of assets held ï 

either to achieve diversification, or to limit the transaction costs. A different constraint may be added 

that would require the optimal portfolio to exhibit an expected return above (or volatility below) a 

selected threshold. None of these requirements change the objective function, their purpose is only to 

refine the set of portfolios under consideration. 

In our approach, we set additional constraints, all of which are based on a variation of network 

centrality. In the classical mean-variance framework, increasing the weight of assets with highly 

positively correlated returns is undesirable, as the increase in interdependence leads to increased risk 

due to weak diversification (the diversification effect in case of any two assets is inversely related to 

correlation).  An asset with high centrality may be similarly undesirable ï a vertex that is very strongly 

connected to others may be viewed as risky, as any negative market movement is likely to influence 

not just the asset, but also its neighbors. By adding constraints for network centrality, we try to control 

for such risk ï by avoiding high centrality, which carries more information than simple bivariate 

correlation (it is affected by relationships to potentially all other vertices), there is hope for  achieving 

better portfolio performance. 

This argument also answers a reasonable question, why would one expect the inclusion of 

constraints to lead to any benefits over an unconstrained problem. If the problem was deterministic, 

then the solution to the unconstrained case would never be worse than the constrained one. However, 

the returns are stochastic processes, and therefore, in an out-of-sample framework, the usefulness of 

the constrained solutions needs to be tested empirically.  
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The beauty of Markowitz mean-variance framework lays in its generality, as it follows from 

very simple and reasonable assumptions. As a consequence, it does not address all aspects of risk that 

may be relevant to an investor, such as downside risk, skewness or fat tails of return distributions. Our 

expectations of future returns and volatility might be different from simple historical averages ï if , for 

example, we use a forecasting model for mean or volatility with superior performance, this may 

influence our choice of optimal weights. Similarly, in this paper, we explore the question of whether 

utilizing centrality measures of interconnectedness adds meaningful information and leads to better 

portfolio performance in an out-of-sample framework. 

For robustness, we use four different network subgraphs (complete, MST, PMFG and threshold 

graphs) together with three centrality measures (betweenness, eigenvalue centrality and expected 

force) to augment the return-maximization and risk-minimization strategies. 

 

3.5.1 Return maximization strategies 

The benchmark strategies we use are widely recognized in portfolio theory and include the 

maximization of expected returns and a variance minimizing objective. As the maximization of 

expected returns would by itself almost always allocate all funds to a single asset (with the exception 

of possible equal maximal expected returns for some assets), this would hardly be considered a useful 

portfolio strategy, at least from the point of view of risk diversification. We therefore enforce a 

quadratic constraint on the expected variance of the optimal portfolio, which should not be higher than 

the average volatility observed across all assets. The optimization problem can be more formally 

written as:  
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where Ŭ is a vector of portfolio weights of length M, E(r ) is a vector of expected returns, D(r ) is the 

M Ĭ M covariance matrix of returns, tr(D(r )) is the trace of the covariance matrix (sum of its diagonal 

elements), and 1 is a vector of length M with all elements equal to 1. In practical applications, E(r ) is 

replaced by historical average returns and D(r ) by their variance. 

 

3.5.2 Risk minimization strategies 

A second classical strategy of portfolio construction involves risk minimization. As the main 

benefit of constructing portfolios is diversification, minimizing the expected variance or the volatility 

of a portfolio may be desirable. However, such strategies lead to the generation of almost non-
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competitive returns, and we therefore decided to impose one additional constraint on the expected 

return that should not be lower than the average return observed across all assets: 
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3.5.3 Alternative network -based asset allocation strategies 

Network information can be used to limit a portfolioôs exposure to a certain asset by not 

allowing its weight to become too large relative to others. This can be achieved by adding a constraint 

that requires weights to respect the ordering imposed by centrality measures. We decided to add the 

following constraint to the set of constraints defined above (see Sections 3.5.1 and 3.5.2): 

Mjibb jiji ...,,2,1,, =¢Ý² aa  (10) 

Here, bi is the betweenness of the i-th asset in a given network. The simple constraint defined 

above was used for each of the centrality measures (the betweenness, eigenvalue, or expected force) 

and for each of the networks employed (complete, MST, PMFG, and threshold networks). We in turn 

generated twelve alternative network-based asset allocation strategies for which the objective was to 

maximize returns (see Section 3.5.1), and we created twelve alternative network-based asset allocation 

strategies for minimizing risk (see Section 3.5.2). However, when a complete network is used, the 

resulting centrality measures are the same for betweenness and expected force values. Therefore, we 

only retained the latter strategy. 

 

3.5.4 Combination strategies 

Since the early works of Bates and Granger (1969), it has been argued that forecasts can be 

improved by combining several unbiased but not highly correlated forecasts into one forecast. We 

employ the same principle by always combining the benchmark with several alternative network-

based asset allocation strategies. This way, we are able to observe which portfolio performance 

characteristics of the benchmark portfolio are being improved upon when combined with network-

based asset allocation strategies. 

For example, in Table 3, we have a strategy denoted as ñBetweenness + Bò. For this strategy, 

50% of investor wealth is allocated to the benchmark strategy (in Table 3, it is the return maximization 

strategy defined in Section 3.5.1), while the remaining 50% is spread equally across all strategies, 

which use betweenness centrality measures in the constraint (see Section 3.5.3). Our choice of equal 

weights is motivated by strand of literature following the work of deMiguel et al. (2007), which 
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documents the difficulties of various approaches to beat the naµve ñequal-weightsò diversification 

strategy. 

 

3.6 Out-of-sample portfolio performance evaluation 

Out-of-sample evaluation is performed within a rolling estimation framework, mimicking an 

investor with one-week investment horizon. We use the first 52 weeks (approximately 1 year) to create 

networks (i.e., to estimate long-run correlations, expected historical returns) and subsequently to 

estimate óoptimal weightsô (Eq. (8) and Eq. (9)) of each asset. We use optimal weights for asset 

allocation purposes with an investment horizon of one week. We calculate and store the realized 

returns for the 53
rd
 week for each of the portfolios. Next, we roll the estimation window one-week 

ahead, i.e., we use data from the 2
nd

 to 53
rd
 weeks to estimate new óoptimal weightsô that are 

subsequently used for asset allocation purposes of the 54
th
 week. The procedure is repeated until we 

reach the end of our sample. 

We report descriptive statistics for each of the portfolios and perform model confidence set 

procedures to compare each portfolio with a given benchmark portfolio in terms of mean returns and 

different Sharpe ratios. 

 

 

 

3.6.1 Portfolio characteristics 

Each portfolio is evaluated based on several basic descriptive statistics: the minimum (Min), the 

maximum (Max), the average portfolio return (Mean), the 1
st
 (Q1) and 3

rd
 (Q3) quartiles of portfolio 

returns and the standard deviation of portfolio returns (SD). The descriptive statistics are 

complemented with a set of portfolio-specific measures: the average drawdown (DD), the expected 

shortfall (ES), the Burke ratio (BR), and the Sharpe ratio (SR). As our sample covers a wide range of 

international stocks, in the main body of the text we evaluate performance of portfolios assuming a 

zero risk-free rate, as it is unclear which rate to actually use in such heterogeneous and international 

sample. In the Appendix (Tables A.2 and A.3), we report results where portfolio performance is 

evaluated using excess return calculated as the difference of the realized return over the 3-month 

Treasury bill rate.  

If  Pi,w is the value of the i-th portfolio at time w, the drawdown is defined as: 
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 The average drawdown DDi is the average of Di,w over w = 1, 2, é, N. The expected shortfall 

of the i-th portfolio ESi
Ŭ
 is defined as: 
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Here, Ŭ denotes the left-tail quantile (usually 10%, 5%, and 1%). The Burke ratio, BRi, is 

defined as the average portfolio return divided by the sum of squared drawdowns: 
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Comparing two portfolios via the Burke ratio allows us to assess whether the higher drawdown 

associated with one portfolio is adequately compensated by its average return. In a similar fashion, we 

employ the widely-used Sharpe ratio and its extensions. The standard Sharpe ratio with a risk-free rate 

of 0% is defined as: 
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The SDi is the standard deviation of portfolio returns, and the ratio is used to assess whether the 

average portfolio return compensates for the variability in portfolio returns. However, it is well known 

that not all variability is bad for the investor. When an investor is in the long position, variability 

associated with market declines is to be considered riskier as variability associated with the market 

increases. We therefore use modified versions of the Sharpe ratio where the denominator is substituted 

with ESi
Ŭ
. In turn, we assess whether the investor is compensated for left-tail risks. 

 

3.6.2 Model confidence set 

We use Hansen et al.ôs (2011) model confidence set to test whether from a given set of models S 

with a dimension of s, there is a superior subset S
*
 with a dimension of s* Ò s. In our empirical 

application, we are interested in comparing portfolio returns and Sharpe ratios. The test is illustrated 

on an example of using returns as a performance measure. Given that the benchmark return is a risk-

free rate r
f
w, let di,j,w denote the differential between returns of portfolio i and j: 

( )( ), , , , , ,

f f

i j w i w j w i w w j w wd l l r r r r= - = - - - (15) 

where r denotes the given portfolio return, i, j = 1, 2, é, s, and w = 1, 2, é, N. In the text, we set r
f
w to 

0 for all w values (see Section 3.6.1 for a discussion and Appendix Tables A.2 and A.3 for results 

using the 3-month Treasury bill). Formally, the multiple hypothesis test can be formulated as H0: 

E[di,j] = 0 for all i, j. We use the following test statistics from Hansen et al. (2011): 
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where ti,j is defined as: 
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and where the denominator is the bootstrap estimate of the variance of the average loss differential 

between portfolios i and j. We follow Hansen et al. (2011) and use the block-bootstrap with 5,000 

replications. The distribution of the test statistics under the null hypothesis is also bootstrapped (see 

Hansen et al., 2011). The procedure applied to Sharpe ratios is similar: all returns are divided by the 

selected risk measure (either the standard deviation or the absolute value of a given expected shortfall 

in the case of modified Sharpe ratios).  

 

3.6.3 Transaction costs 

To account for possible transaction cost effects on overall portfolio performance, we follow 

Peralta and Zareei (2016) and calculate the break-even transaction cost (BETC) of each strategy. This 

approach assumes a fixed cost for each transaction but does not require any assumptions on 

transaction fees, which would become nuisance parameters in the calculation. Instead, the BETC 

calculates how high costs would have to be to eliminate the return generated by a portfolio strategy. 

Thus, different strategies may be directly compared without the need to establish specific transaction 

fees. 

The break-even transaction cost is dependent on portfolio returns but also on the turnover. 

Strategies that are less prone to frequent changes in asset allocations should exhibit lower costs and 

thus should potentially have a higher BETC. We calculate the turnover for each portfolio strategy i as: 
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Thus, for each time period, we calculate the difference in asset allocations between optimal 

weights for the next period Ŭi,j,w+1 (with the corresponding next period return r i,j,w+1) for portfolio i and 

asset j and the asset allocation of the previous period, including the change in the relative asset 

composition resulting from gains or losses between initial investments and the time at which the 

portfolio is being rebalanced.  

The turnover is used in the calculation of BETCi for each portfolio strategy i as the solution of 

the following equation: 

( )ä ä
ä= =

=

+

+

+ =

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

-

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

+

+
--+

N

w

M

j
M

k

wkiwki

wjiwji

wjiiwi

r

r
BETCr

1 1

1

1,,,,

1,,,,

1,,, 01

)1(

)1(
11

a

a
a  (19) 

Here, r i,w is the return of the portfolio strategy i at time w. 
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4. Results 

In this section, we compare alternative network-based asset allocation strategies with respective 

benchmarks. Rather than going into fine detail, we focus on general differences between individual 

(Section 3.5.3) and combination strategies (Section 3.5.4) based on respective benchmark strategies 

(Sections 3.5.1 and 3.5.2). 

 

4.1 Evaluation of return maximization strategies 

Although the benchmark strategy (V00) generated the highest average portfolio return, except in 

one case, the highest average portfolio return was not found to be statistically significant (Hansen et 

al.ôs 2011 test) from average returns of individual and combined portfolio strategies. Furthermore, two 

strategies led to similar levels of average returns (V10 and V16). 

The benchmark strategy also generated the highest standard deviation (SD), as all alternative 

network-based asset allocation strategies vary less in terms of portfolio returns. Interestingly, when 

reviewing individual strategies (V01-V11), SD was found to be on average 37.7% smaller than the SD 

of the benchmark strategy. However, the returns were on average 54.6% smaller as well, suggesting 

that individual network-based strategies have not improved the overall risk-return profile of the 

benchmark portfolio. This is confirmed by the Sharpe ratios (SR), which are in most cases smaller than 

those reported for the benchmark portfolio. 

On the other hand, a review of the combination strategies (V12-V19) shows that the SD 

declined by approximately 37.2% on average, while the return only declined by 27.2%. Therefore, the 

Sharpe ratios of combination strategies are now larger than the benchmark and in one case (V16) also 

statistically significant. 

These results suggest that network-based asset allocation strategies have the potential to 

improve the risk-return profile of the benchmark portfolio. This is further supported by additional risk-

based measures, as the average drawdown (DD) tends to be smaller while the Burke ratio (BR) is 

always larger for combination strategies. 

Regarding left-tail risks, expected shortfalls in the combination strategies are always larger (i.e. 

less negative conditional returns) for all three quantiles (ES10, ES5 and ES1). More importantly, the 

excess return of the benchmark portfolio does not seem to compensate for the excess left-tail risk, as 

the modified Sharpe ratios (SR10, SR5 and SR1) for combination strategies tend to get improved. 

For illustrative purposes, Figure 4 plots the cumulative returns and drawdown of the benchmark 

strategy and presents the two individual strategies that performed the best according to the SR, SR10, 

and SR5 portfolio performance measures. The figure clearly shows that the benchmark strategy led to 

the highest cumulative returns most of the time but also suffered from excessive drawdown periods. 

The cumulative returns of network-based asset allocation strategies are less volatile and considering 
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the portfolio performance characteristics described above, it seems that these strategies might be 

valuable for investors living in mean-variance utility framework.  

In Figure 5, asset allocation is visualized for the same set of strategies where we can observe the 

portion of investorôs wealth allocated to specific asset classes (stocks, commodities, currencies, and 

bonds). Clearly, regardless of the strategy used, stocks seem to dominate dynamics of asset allocation 

over short periods where either all or no investor wealth is allocated to stocks (see spikes in the blue 

polygon in Figure 5). 

These findings led us to evaluate strategies based on the turnover and BETC. Here, it is evident 

that not only is the turnover much larger for individual network-based strategies, but the BETC is also 

smaller, which suggests that although individual strategies led to improved risk-return portfolio 

characteristics, when transaction costs are taken into account, such benefits may disappear. Turnover 

and transaction costs of combination strategies are better than those of individual strategies but are still 

worse than those of the benchmark. We therefore conclude that under the return maximization 

portfolio approach, the improved risk and left-tail risk-adjusted returns of network-based asset 

allocation strategies are sacrificed by increased transaction costs (Table 2). 
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Figure 4 Cumulative returns and drawdowns of return maximization strategies 
Notes: We show the benchmark strategy and only two individual strategies that performed the best according to the SR, 

SR10, and SR5 portfolio performance measures. 

 
Figure 5 Asset allocations for selected return maximization strategies 


