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Abstract
In this study we construct financial networka which nodes are represented by assets where
edges are based on lengn correlations. Weonstruct four networkscoOmplete grapha minimum
spanning treea planar maximally filtered graptand a thresholdsignificancegraph) and use three
centrality measures (betweenness, eigenvalue centralitytharekpected force)To improve risk
returncharacteristics of weknown return maximization and risk minimization benchmark portfplios
we propose simpladjustments to portfolio selection strategthatutilize centralization measures
from financial networksFrom a sample of45 asset¢stockmarket indices, bondnd money market
instruments commodities, and foreign exchange ragsdfrom datafor 199 to 2015 we show that
irrespective of the network and centrality employdte proposednetworkbasedasset allocation
strategies improve keportfolio return characteristicin an owof-sample frameworkmost notably
risk and lefttail risk-adjusted returnsResolving portfolio model selection uncert#st further
improves risk-return characteristicsimprovementsmade to portfolio strategies based orisk

minimizationare alsaobust to transaction costs.
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1. Introduction

Portfolio selection isa key conceptof modern finance theory. Since the seminal work of
Markowitz (1952)a vast amount of literature hiusedon developing new concepts and techniques
for moreeffective portfolio diversificationThis includesBlack and Littermad §1991) model, which
enabl es i nvestamassd retarpseabe included wnithaliovaptimizatiors; the se
called postmodern portfolio theory (Rom and Ferguson, 1994), whtognizesdownside risk
other than normal distributisrfor patterrs of returns the strand of literaturéhat considersigher
order moments of returnig optimization procedusxe.g., Kane, 1982; de Athayde andrek, 2004)
andimproved covariance matrix estimatof®la et al., 2008Pantaleo et al., 2011

In this paper, we explore the potential benefits that information on the interconnectedness of
returnsoffers across five asset classes: stocks, commodities, currencies, bond and money market
instruments.Motivated by the recent contribution in the literature (Peralta and Zareii, 2016), our
contribution lies in proposingnd comparing asset allocation stratedres exploit the topological
structure of a networkf relationshipsacross asset®ur analysis is conducted over four steps. First,
we construct the return series for each asset and calculate correlations emamg Second, we
constructvarioustime-varying correlation networks and quantify the relative importance of assets
within the network based on their interconnectedniessthe centrality measuteThird, we construct
investment portfolios: either bemmark portfolios based on modern portfolio theory or their
alternative versions augmented by information on network topoldgye, we propose a simple
constraintin portfolio optimization that requires weights to respect the ordering imposed by centrality
measuresFourth, we focus on various measures of the constructed portfolios to evaluate their
performance.

Our findings suggest that our alternative netwoaked asset allocation strategies improve risk
return profiles relative to the benchmark portiolMoreover, the improved rigleturn profile is robust
with respect to transaction costs, which is especially important from a practical point of view.

Our study is closely related to the work of Peralta and Zareii (2016),wehe the first to
theoretically prove the negative relationship between the centrality of assetsafitizincial network
and optimal weights under the Markowitz framewoAs a result,the centrality measures of
constructed networks can be usedaoailitate portfolio slection. Thishasalso beendemonstrated
empirically by means of isample and oubf-sample analyssof networkbased investment strategies,
which may improve portfolio performanceAs these authors notenuch of the networkrelated
researcHacks specifc practicalapplicatiors interms ofportfolio selectiorandis more descriptiven
nature We fill this gap in the literature@nd our results clearly show that the constructed network takes
into account complex relationships between assets beyondrttezsrired by correlations. Our main
contributions can be summarized in more detail as follows:

i. When transaction costs are ignored, simple extensions of nebaedd asset allocation

strategies generally improve ris&turn characteristics.
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ii. When the goal igo maximize portfolio returns, improved risk and {&fil risk-adjusted
returns are costly, as they are mitigated by increased turnover and transaction costs.

iii. When the goal is to minimize portfolio risks, improved risks andteiftrisk-adjusted
returrs are likely to be retained even when transaction costs are included, as transaction costs
are |l ower than those of Markowitzés respecti

iv. The network approach appears to improve portfolios irrespective of the employed network
model or centrality measure used.

v. The most notable improvements were fownth regardto left-tail risk-adjusted returns.

vi. Resolving portfolio model choice uncertainties by using combination portfolios (where 50%
of investor wealth is invested in the benarknportfolio while 50% is invested into a set of
networkbased asset allocation portfolios) leads to improvedregkn characteristics and is

the recommended approach.

2. Interconnectednessamong various asset classes

As network theory has penetratdte field of finance (e.g., Mantegna, 1999; Mantegna and
Stanley, 1999; Onnela et al., 2003), several authors have recommended exploiting the benefits of
networks in portfolio selection. Within this network perspective, financial markets or individutd asse
are perceived as nodes and links among them are usually represented by correlations. As such,
correlation networks can be used to establish links among numerous asset classes and to specify which
assets are important in terms of interconnectedness d(b@sesome centrality measure). The
usefulness of this approach has been supported by Billio et al. (2012) and Diebold and Yilmaz (2014,
2015), who have already suggested that further research on complex relationships in financial markets
is headed towardr@liance on network approaches.

As argued by Baitinger and Papenbrock (2016), interconnectedness as an alternative risk
concept has thus far attracted very little attention in the field of portfolio management both in theory
and practice. They show thattérconnectedness risk (i) shows only moderate or no connection to
conventional portfolio optimization inputs and that (ii) active investment strategies based on
interconnectedness information outperform their conventional counterparts. Kaya (2015)edescrib
how networks among asset classes (based on mutual information distance) can be used to measure and
visualize systemic risk, to enhance diversification and to assist with asset pricing. In building
diversified portfoli os, raphthee(hiedaechicalrstucture kfodak 6 ) ¢
a tree) and machine learning techniques to address problems of a quadratic optimization procedure
designed for inequalitgonstrained portfolio optimization problems (known as the Critical Line
Algorithm proposd by Markowitz, 1956). Onnela et al. (2003) note that assets of the classic
Markowitz portfolio are always located on the outer leaves of the correladi®ed minimum

spanning tree.
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Empirical research hasxplored potential diversification benefits across different asset classes
by studyingco-movement between asset returns. For exantpéerelationshipamongequities and
bondswas studied in an influential papby Shiller and Beltratti (1992) who foundegative ce
movementbetween stocks and ba®dmany later studies have produced similar findirfgs.,

Andersen et al., 2007; Baele et al., 20Ilhese negative stoddlond return correlations are mostly
descri bedtoaaf at yid | plgéam obne noxpl airned by ,withie Adi sc
the context of present value, increase in interest rates impact both the bond and stock prices, but in the
opposite direction. However, later studies (e.g. Andersen et al., 2007) suggest that the stxdi

bonds relation holds only during the contractions in the business cycle, while during the expansion this
relationship is positive. In fact, stotlond correlations exhibit significant time variation (for a
persuasive exampleee Figure 1 in Baelkt al., 2010).

There are several theoretical reasons explaining mutual dependencies among various asset
classes. For example, exchange rates and interest rates are closely related via the uncovered interest
rate parity (Ciner et al., 2013). Moreover, lbange rates and equities should be closely related, as
changes in currency affeatcountryp srade balance, its output, and thus corporate cash flows. Earlier
studies usually reported positive relation between U.S. dollar revaluations and equity retbrrs
again, this relationship might be doubted. Ehrmann et al. (2011) found that whereas U.S. equity
markets do not respond to exchange rate movements, the euro area markets rise by a substantial
amount following an appreciation of the euro. Further,@eatgation of the dollar leado an increase
in U.S. bond yields and a reduction in euro bond yields.

The same ambiguity applies ftre oil and equity relationshipanincrease in oil prices driven
by an increase in demand in the world economy shouldabsociated with positive stock price
movements (Park and Ratti, 2008). On the other hand, the results of Cunado and de Gracia (2014)
suggest the existence of a negative and significant impact of oil price changes on stock market returns,
mostly driven by @ supply shocks. With respect to exchange ratesexpbrting countries (il
importing) could experience exchange rate appreciation (depreciation) when oil prices rise (fall)
(Krugman, 1980). More recently, Reboredo et al. (2014) showed that in todgseperiod oil price
changes had a weak and negative effect on exchange rates (and vice versa). Thus, after the recent
global financial crisisthere is some evidence of negative interdependence between oil prices and
exchange rates. Reboredo (2013) atsamined price cmovements between oil and gold. His
analysis revealed that gold cannot hedge against
oil price movements.

The iteratureon findingthesec al | ed fAsaf e hav e nmovideansesterd tise, whi c
full benefits of diversification, is quite extensive. The most common candidate to be conaidafed
haven is usually gold. Baur and Lucey (2010) studied constant andvdityiag relations between
U.S., U.K. and German stock andngoreturns (MSCI indicesyith respect togold returns. The

results indicate thagold is not a hedge against bondewever for stocks it is a hedgeas well as a
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safe haverfuncorrelated or negatively correlated assabxtieme market condition$ but only for a

limited time (around 15 trading daysp.a u m° h | and Ly-csa (2017) show
properties of gold have a changing natdreey examined the quantile dependence among gold and

the U.S. stock market sector indices over the peid®99i 2016.From a shorterm perspective (up

to 10 days) after the crisis, gold acted as a safe haven for all sectors except Industrials. From the same
shortterm perspective but ithe period before the financial crisis, they did not find any ql&nti
dependence, and gold could be considered a safe haven for most of the sectors.

Grisseand Nitschka (2015) analyzed the Swiss fra
the Swiss franc exhibits safe haven asset characteristics against someiesifoehaot against other
major currencies, such as the U.S. dollar and the yen. Fatum and Yamamoto (2016) investigated
currency safe haven during the recent financial crisis and confirmed that during the global crisis, the
Japanese yen exhibits the stresigsafe haven currency behavior followed by the Swiss franc and then
the U.S. dollar. Flavin et al. (2014) assessed a number of safe haven assets from the perspective of an
equity investor and provide evidence in favor of choosing either gold or theridatgel bond aa
safe haven asset. Botif these assets delivered risk reduction benefits during the times of stock
market decline. In contrast, shortated bonds do not provide such benefits as they are more prone to
systemic risk.

Mensi et al. (2013gxamine return and volatility links among the S&P500 and commaodity price
indices for energy, food, gold, and beverages from 2000 to 2011 and find that the gold and oil markets
appear to be strongly influenced by U.S. stock market volatility. Nazlioglu. e2@13) study
volatility transmission between oil and selected agricultural commodity prices (wheat, corn, soybeans,
and sugar) from 1986 to 2011. Their results from variance causality tests differ depending on the
periods examined but reveal significardlatility spillovers from the oil market to the commodity
markets (except for sugar) during the posti si s peri od. Barun2zk et al
spillovers on the oil commodity market over the 198¥14 period and show that spillovers inceeas
after 2008. However, they also show that relatively balanced and low asymmetries in volatility
spillovers correlate well with the ongoing financialization of oil commodities and the advent of
heightened oil exploration and productioninth&U | n addi ti on, Barunz2k et
liquid U.S. stocks in seven sectors and offer ample evidence of the asymmetric connectedness of
stocks at the disaggregate level. The asymmetries in spillovers propagate in such a way that although
negatie spillovers are often of substantial magnitude, they do not strictly dominate positive spillovers.

As was the case in the c¢ omarketdonneceddss and 8. ktecksss, t he
shown tohave increasesubstantially over the receimancial crisis.

The overview is far from exhaustive, but it illustrates a key point. Regardless of asset class
pairs, methodology arior sample period, relationstiseem taovary over time.Interconnectedness as

an alternative risk concept should thusrmrporated in portfolio optimization.



3. Dataand methodology

As we allow for diversification across asset classesnu& addresthe way in whichreturns
are constructed so that the proposed allocation truly reflects the returns an investor would obtain (this
is particularly important when mixing stocks with bond$ye define the rules for portfolio
constructionthat would represent ouinvestment strategies. These strategies include classical
approaches to portfolio constructjomhich may serve as a benchmdmlt alsostrategies that are
based on the topological properties of underlying t4aging correlatiorbased networks.

Table 1 Descriptivetatistics of weekly asset returns

Mean Stdev. Skew Kurt AC(l) AC%1l) Obs

Stocks
BVSP 0.185 3.889 -0.409 5.768 -0.079 0.173 886
DAX 0.069 3.322 -0.640 7.763 -0.042 0.194 886
FTSE100 0.004 2.491 -1.064 14.242 -0.085 0.090 886
KOSPI 0.144 3.610 -0.503 6.764 -0.081 0.314 886
MERV 0.319 4.829 -0.408 7.146 0.035 0.168 882
N225 0.011 3.024 -1.154 11.428 -0.012 0.120 886
SMI 0.012 2.662 -1.107 16.647 -0.161 0.278 886
SP500 0.059 2514 -0.716 9.341 -0.080 0.284 886
SSE 0.109 3.472 -0.084 5.072 0.068 0.139 878
TSE 0.074 2.471 -0.919 9.800 -0.114 0.404 886
TWII 0.005 3.214 -0.275 6.060 -0.032 0.081 873
Commodities
Brent 0.122 4.703 -0.799 6.656 -0.003 0.230 886
Cocoa 0.124 4.324 -0.036 3.984 0.019 0.050 886
Copper 0.109 3.811 -0.727 8.711 -0.043 0.130 886
Cotton -0.118 4.071 0.258 4.914 0.024 0.068 858
Gold 0.130 2532 -0.338 6.596 0.025 0.394 886
NatGas 0.012 7.446 0.296 6.472 -0.041 0.262 886
Silver 0.112 4.232 -0.823 6.962 -0.022 0.127 886
Currencies
AUD_USD -0.017 1.805 1.534 14.504 -0.030 0.246 886
CAD_USD -0.011 1.241 0.926 9.655 -0.025 0.242 886
CHF_USD -0.039 1.625 -1.126 21.705 -0.031 0.029 886
CNY_USD -0.028 0.213 2.130 55.105 0.044 0.012 886
EUR_USD 0.008 1.400 0.250 3.867 0.030 0.052 886
GBP_USD 0.009 1.287 0.846 9.439 -0.030 0.213 886
JPY_USD 0.009 1.436 -0.428 5.373 -0.079 0.168 886
NOK_USD 0.016 1.619 0.377 3.853 -0.031 0.121 886
Money/bond market
bAAA 0.044 1.849 0.110 5.489 -0.130 0.094 886
bBBB 0.029 1536 -0.399 4.701 -0.070 0.213 886
bCPF_1M 0.173 4.063 2.816 40.380 -0.185 0.364 884
bCPNF_1M 0.197 2.995 3.102 25.373 -0.026 0.194 885
bEMEA corp 0.180 0.964 -3.796 53.937 0.402 0.342 886
bEMER _corp 0.064 2.867 -1.361 10.037 0.281 0.311 886

bEMER _corp_high ~ 0.079 1.712 -1.327 10.058 0.281 0.347 886
bEMER_EURO corp 0.089 2.645 1.032 26.837 0.220 0.064 886

bEUR_HY 0.074 2840 -0.464 8.686 0.214 0.092 886
bGER_1Y 0.220 3.045 1.230 12.860 0.018 0.198 886
bGER_5Y 0.190 3.444 -0.336 6.964 -0.073 0.172 886
bGER_20Y 0.110 2556 -0.469 9.603 -0.012 0.320 886
bGER_corp 0.052 2.364 -0.680 14.692 -0.023 0.058 886



bJPN_1Y 0.060 1548 1.399 18.929 0.097 0.090 886

bJPN_5Y 0.117 2.844 -0.055 6.366 -0.040 0.241 886
bJPN_20Y 0.085 2.095 -1.016 11.254 0.011 0.290 886
bUS_1Y 0.167 2.975 0.716 10.880 0.032 0.233 886
bUS_5Y 0.090 3.748 -0.432 4.561 -0.068 0.089 886
bUS_20Y 0.067 2.440 -0.108 4.634 -0.090 0.118 886

Notes: AC(1) is the value of the fimtder autocorrelation coefficient of the original series.*J is the value of the first
order autocorrelation coefficient of squares of the original series.

3.1 Data and return series construction

To allow for crossasset allocation, our sample encompasses stock indices, bonds, commodities
and selectedoreign exchange ratgseeAppendix Table A.1) with a total ofM =45 assetqstock
market indices, bond and money market instruments, commodities, and foreign exchahgéhmates
daily return datacovera period from Januard©99to Decembe2015. Due to nortrading the number
of daily observations for each asset varies 2814 to 4458 In our analysiswe focus on weekly
datg and thereforegiven the priceP;,, of asset at the end of thaveekw, the continuous weekly
return was calculated ag, = log(P;w/Piwi1). Whenthe given asset is a bond with a yigid, the
return iscalculatedasr;, = log((1+yiwi1)/(1+Yiw)). In severalcasesless than 3 daily observations
wereavailablefor a given week of a given ass8uch weeks were removed frahe given asset time

series of weekly returns.

3.2 Long-run correlation (variance-covariance matrix)

After creatingthe return series, weonstructed estimation windovier 12 montls that were
rolled one week ahead,resulting inw = 1, 2,é , N overlappingestimation windowsFor each
estimation window, we have calculated the long correlation coefficienf;;,, for any two return
seriesr;,andr;,, wherew denotes thaa givenobservation belongs tgiven estimation windowi.e,
that for calculation data from the 52 week priomt@are usedBetween wo assets andj, the weeks
for which returns are recordeday differ, andprior to the calculatiornf 4., seriesr;,, andr;,, were
synchronized via listwise deletion.

To measure the dependence between assets, we decidek tbhe longrun correlation
coefficient which is based on the estimator of the heteroskedasticity and autocorretatgistent
variancecovariance matrixntroduced byAndrews (1991)This choicewas guided by the fact that
return series are subject itald levels of autocorrelation and teteroskedasticitysee Tablel). We
also usdghelongrun estimatoras itis much simpler taisein practice’

For a given sample siZe Andrew®(1991)estimatetakes thdollowing form:

- ok e T amoe
=g= = 0= k&e—afr. (m 1
& S g um 8 ks ofF; (m) ()

! We also experimented witpartial correlations as a measure of dependence, but the overall results remained
practically the same. These results are available upon request.
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andwheret= 1, T2Z,=[rg rj,t]T, andk(.) is the quadratic spectral kernel weighting functiat
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together with bandwidth parametBrweights lagged variances and-wariances.In our empirical
work, wemade an arbitrarghdce for the banlwidth parameter to be of sizevghich corresponds to 3

weeksthatattainthe largest weighiThe quadratic spectral kernel function is defiaed
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2,265
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Finally, thelong-run correlation is estimated:as

_ |
- (4)
NLILY

A significance test on the lofrgn correlation coefficient can be performegingPanopoulou et a s
(2010)method where the test statistic fély: §;; = 0, is defined as

= [T

Ei\g (5)
andwhereunder the null hypothesig follows a standard normal distributiois the test is performed
between all possible pairs of 48setswe usea rather strict significance level of 0.QUMi 1)/2)

corresponihg to the Bonferroni adjustment.

3.3 Networks

The calculated correlation coefficients have been used as a basis for the construction of time
varying networks, which are in turn used in portfolio optimization. More specifically, a network at
timew= 1, N32s,agrapl/G,(V,E,) defined by a set oferticesv={ 1, R} that&corresponds
to individual assets and a set of edgg® V1 V. Each edge may be assigned a-negative weight,

expressing the #Adistanced bet ween truineorrelatiant i c e s .
coefficientsy as d =,/2(1- r). The larger the distance the less interconnected asset ratarns

Based on which edges are retaingdthe next subsectionsve discussseveral approaches to the

construction of se,,.

3.3.1 Complete graph

As correlations between the returns of any two assetde calculatedt any time, the resulting
structure forms a soalled complete graph in which any two vertices are connected by an edge.
Although the edge weights (given by correlatiomgn vary, the resulting structure is rather

uninteresting, at least fromtopological point of view, as every asset is linked to all otregardless



of the strength of the relationship. A complete graph does not limit the portfolio optimizer in any way
with respecto constraintplacedonthetopology of a network.

In financial network studies, ongypically does not analyze complete graphs, kathera
suitable subgrapha networkof the same number of verticéisat retainsonly certain edges thatre
consideredelevant

In our analysiswe usethree different types of subgrapmsmely,a minimum spanning tree,
planar maximally filtered graph, ardhreshold significance graptvhich are describefirther in the
following subchapters. To obtain a better pecdive, we also plot these subgraphs in Figuiies 1
using our full sample. Based on eigenvalue centralityl. ondon stock market appears to be the one
with the most connections in all three subgraphs. Although exchisiosome edges according to
different network creatiorrules do not have straightforward econommieaningsin our figuresit is

quite clear that vertices are clustenetb asset clasgrougs. This applies to all threef thesubgraphs

considered
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Figure 1 Minimum spanning tree of individual asset return correlatiorikddull sample

Notes: Vertex sizeand colos arebased on eigenvalue centralitye, the higher the size or the darker the color of the

vertex, the higheis the centrality othe given vertex (asset). Edges between vertices represent relationships retained in the
minimum spanning tree. Assets that have many edges and are centralized in the graph are considered as more interconnected
T an undesirable property for asset allocatiproblem.For example, FTSE 100 is highly interconnected not only among

stock market indices but also within the whole network. On the other hand, gtild ®NY/USD exchange rate are less

interconnected with the rest of the assets.



3.3.2 Minimum spanning tree

A widely usedand well-establishedsubgraph ighe so-called minimum spanning tre@MST),
which wasintroducedto financial context by Mantegna (1999). A spanning tree is an acyclic
connected subgraptontainingall vertices(a graph with naircleg with a path connecting any two
vertices.Requiremenbf a minimal such spanning tree reféo thevalues ofedge weights. To satisfy
the conditiors of edge weightnon-negativity which allows for their interpretation as distances,
Mantegna (1999proposed a nonlinear decreasing transformation of correlations to befaused

weights(di'j =./2(1- I )). As the transform is decreasing, higher correlations translate into smaller

distances. MST is thus a spanning tree with a minimum sum of weightsaifed edges. This
supports the notion of keeping only the most important edges in a igrtagph In a network ofV
vertices, a MST retains preciseli 1 edgesThe MST is extracted from the complete graph using
Kruskal 6s (1956) algorithm.

CA@SD bCENF) 1M

AU@D [ @

&
OC!

Figure 2 Planar maximally filtered graph of individual asset return correlatiotisefiadl sample

Notes: Vertex sizeand colos arebased on eigenvalueentrality, i.e., the higher the size or the darker the color of the
vertex, the higheis the centrality of the given vertex (asset). Edges between vertices represent relationships retained in the
planar maximally filtered graph. As before, FTSE 100 is interconnected among stock market indices. Among bonds, it is the

20-year US Treasury bond, while among commoditikss Copper.
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3.3.3 Planar maximally filtered graph

Although the MST presents a frequentisedsubgraph, its simplicitynay provelimiting. As a
complete (unoriented) graph dv vertices hasvi(M T 1)/2 edges,its reduction to a MST might
translateinto a loss of some important network features. To allow for a richer set of network
structures, Tumminello et al2Q09 proposedusinga planar maximally filtered grapliPMFG) that
replaces the constragwf a spanniiy tree with constraistof forming a planar graph. These subgraphs
may include cycles or complete subgraphs of up to 4 verticestladare thus more suitable for
describinghighly interconnected netwaskA PMFG onM vertices has preciselyM8i 6 edgeswhich
is roughlythree times as much as a minimum spanning treaddition, @ MST is a subgraph of a
PMFG, therefore a PMFGincludesall of theedges of aMST and may be thought of as its extension.

CA@SD

bCF?EFij

-&—Q\ g
b@w & s

Figure 3 Threshold significance graph of individual asset return correlatiotiee fall sample

Notes:Vertex sizeand colos arebased on eigenvalue centraliiye. the higher the size or the darker the color of the vertex,

the higheris the centraliy of the given vertex (asset). Edges between vertices represent relationships retained in the
threshold significance grapidditionally,the threshold significance graphvealedthe central role of the FTSE 100 among

all asses.
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3.34 Threshold significance graph

Rather thancreating topological constraints on the interconnectedness of ,a$setst al.
(2010) considered networks wheme only correlations abovea threshold value were useds
topol ogi cal constraints in MST and PMFG have u
al., 2015).We thereforealso consideredhresholdnetworkswhere only edgethat were statistically
significant remained in the network. More specificalliyenthe estimate of;; was insignificant from
zero, the estimate ¢f; wasset to 0.

3.4 Centrality measures

To describe the topology of the financial networks, we use several measures of the relative
importance ofassetsWe focus mainly orcentrality measuresmiamely,betweenness and eigenvalue
centrality. Each centralityepresents a different measutlusresulting in a numerical nodal attribute
describing the importance of a noddativeto others. The simplest centrality measure, which we do
not useto construcour portfolios, is the degree centrality, whi@ssignsach vertexo the number of
incident edgesthus, the higher thdegree ofcentrality, the more interconnecti@vertex has with
remaining vertices ia network.

Betweennesgepresents a different centrality measthiat counts the number of times a vertex
lies onthe shortest path between other vertices in the network. The intuition behind betvedsratses
follows. Assune thatwe wishto calculate the measure for a vertek V. For any two distinct vertices
other tharv, says, tN V, the shortest pattmay bedeemedhe nost direct path informatiofor return
shodks) may take to spill over betweenandt. As thedistance between vertices is given by edge
weights, which are a decreasing function of their mutual correlations, shortesapatioutes along
the highest correlations to reasffrom t (and vice versa). Depending on the network structure, there
may bemore than one shortest path between any two vertices. For exampte M8Ta there is
always only one shortest patim a PMFG, there will always be at least one such path, ard in
complete graph, shortest paths will always reduce to a single edge, as all vertices are adjacent. To
calculate betweenness fgrone counts the fraction of times a shorpegh betweers andt contains.
More formally, let the number of shortest patlkesieens andt bens, ¥ = andletns;N = be the total

number of shortest paths betwesandt. The betweenness faiis then calculated as

L. N

a S,v,t (6)
s, v, t ns,t
s,v,tl VvV

In case of betweenness, vertices with high centrality present important nodessense that
theymediate the interconnection between other vertices and act as spillover hubs.
Another centrality measure we use in tBisdy is eigenvalue centralityHere, the relative

importance of a vertex not only depsrah the number of connections a vertex letheir quality
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also becomes relevant. Asthe casén social networks, some vertices may be neigaificantthan
others and inturn connections to these vertices are more important than conretdi@erigheral
vertices Being connected by a few links te@all numbeof important vertices may be more relevant
than forming a higher number of connections with inconsequential veificespture this idea more
formally, let A, be the adjacency matrix @&, that is, anM I M matrix, whereas, = 1 if there is an
edge between verticesandt andwhereas; = 0 otherwiseThe centrality measur@r all verticesis
obtainedbf i ndi ng t he g maea auctettsafor awdctgrenmaV:al ue o

/x=Ax (7)

Eigenvalue centrality scores may be extracted as elements of the eigenvddtde that for
(strongly) connected graptsich aghosereferencedn this paperthe eigenvector solution is unique
and positive as a consequenée¢he Perror-robenius theorem.

As a third possible measure of the relative importance of an asset in a network, we use the
expected forceAs Lawyer (2015) argues, classical centrality measures are usually well suited for
identifying the most important vertices in a network, but their values are notmespingfulfor
other, less important nodds. our case, when determining portfolio weights depending on centrality
measuresthe importance of all vertices @sitical. The expected force is a measusedto describe
the spreading power of nodes from an epidemiological perspecti@éinemcial context, this property
becomes relevarih descriling a situation wheri development on some assets spier to other
assetor asset classeaq is thecasefor contagion) From theexpected forcgit is possible to capture
two distinct aspects that defirtbe ability of a vertexto spread information throug network. For
vertices with high spreading power, their force comes from their own interconnectedness (or vertex
degree). However, vertices witbssspreading power may also exhibit hilglvels ofexpected force
when their direct neighbors have high vertkegrees and are thus able to spread information throug
the network structurmorequickly.

In general, we expect the centrality measures to provide additional information to the problem
of portfolio optimization. The main reason for this belief is the fact that in normal econometric or
statistical setting, most relationships are captured agidtieasuch as in the case of correlation
matrices. Network analysis addsiaique perspective on interrelationshipsost centrality measures
are based on paths, rather than bivariate relationships. Shortest paths and their lengths present a form
of measte ofinterconnectedneghat cannot be replicated lbyrrenteconometric tools, which makes
them a potentially useful alternative jmoblemsexploiting dependencstructures as is the case in

portfolio optimization.

3.5 Portfolio strategies
Specifications of the optimization problems described in this section are used to calculate
optimum portfolio weightsthusdetermining the shareahi n v e st o r Gested into pespeciive i n

assets.
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When trying to incorporate topological informatiofiom financial networks into an
optimization problem, there are two alternativegpological informatiorcaneither become part of the
objective function and thus become the determinant and measure of suitability of a proposed portfolio
regardingwhataninvestor deems desirable, or it is possible to include such informadiadditional
constraintghata portfolio must satisfy. In this paper, we pursue the second approach only.

To explain the consequences of this decision, we may consider the inteypretiaboth
approachesChangingthe objective function in a portfolio optimization routine might be viewed as
changing the property the investor desiresiay it be maximum return, minimal volatility or some
other measure. Changing the constraints omther hand only limits the feasible set of portfolios that
are acceptable for an investor.

The classical meawmariancet heory has been derived from maxi
approximated by a Tayleseries expansion, which leads to the walbwn result of utility increasing
with the expected return and decreasing with volatility of portfolio returns. In our approach, we
follow these classical results and do not make modifications to the objective function, which we
consider to be valid.

As forthe constraints, several legitimate reasons may exist that motivate a change in the feasible
set of portfolios. As @impleexample, an investor might wish to control the number of asset$ held
either to achieve diversification, or to limit the transactcosts. A different constraint may be added
that would require the optimal portfolio to exhibit an expected return above (or volatility below) a
selected threshold. None of these requirements change the objective function, their purpose is only to
refinethe set of portfolios under consideration.

In our approachwe set additional constraints, all of which are based on a variation of network
centrality. In the classical meariance framework, increasing the weight of assets with highly
positively correated returns isindesirableas the increase in interdependence leads to increased risk
due to weak diversification (the diversification effect in case of any two assets is inversely related to
correlation). An asset with high centrality may be similarigesirablé a vertex that is very strongly
connected to others may be viewed as risky, as any negative market movement is likely to influence
not just the asset, but also its neighbors. By adding constraints for network centrality, we try to control
for such riski by avoiding high centrality, which carries more information than simple bivariate
correlation (it is affected by relationships to potentially all other vertices), there is hope for achieving
better portfolio performance.

This argument also awers a reasonable question, why would one expect the inclusion of
constraintgo lead to any benefits over an unconstrained problem. If the problem was deterministic,
then the solution to thenconstraine@dase would never be worse than the constrainedHdme&ever,
the returns are stochastic processes, and therafoam outof-sample frameworkthe usefulness of

the constrained solutions needs to be tested empirically.

14



The beauty of Markowitz meavariance framework lays in its generality, as it follows from
very simple and reasonable assumptions. As a consequence, it daddrestall aspects of risk that
may be relevant to an investor, such as downside risk, skewnést tails of return distributions. Our
expectations of future returns and volatility might be different from simple historical avérdgésr
example we use a forecastingmodel for mean or volatility with superior performance, this may
influenceour choice of optimal weights. Similarly, in this papse explore the questioof whether
utilizing centrality measures of interconnectedness adds meaningful information and leads to better
portfolio performance in an owf-sample framework.

For robustess, we use four défentnetworksubgraphs (complete, MST, PMFG and threshold
graphs) together with three centrality measures (betweenness, eigenvalue centrality and expected

force) to augment the retumaximization and riskninimization strategies.

3.5.1Return maximization strategies

The benchmark strategiege use arewidely recognizedin portfolio theoryand include the
maximization of expected retwsrand a variance minimizing objective. As the maximization of
expected retusiwould by itself almost always allocate all funds to a single asset (with the exception
of possibleequal maximal expected retgrior some assets), this would hardlg considered a useful
portfolio strategy at least from the point of view of risk divéisation. We thereforeenforce a
guadratic constraint on the expected variance of the optimal portfolio, which should not be higher than
the average volatility observed across all assets. The optimization probtebe more formally

written as

argmaxU" E(r)
ar

“Tomie FO)

Ui1=1

az20 i=12...M

whereUis a vector of portfolio weights of lengil, E(r) is a vector of expected returri3(r) is the

M T M covariance matrix ofeturns tr(D(r)) is the trace of the covariance matrix (sum of its diagonal
elements)andl is a vector of lengttM with all elements equal to In practical applicationg(r) is

replaced by historical average returns Bxid) by their variance.

3.5.2Risk minimization strategies
A second classical strategy portfolio constructiorinvolvesrisk minimization. As the main
benefit of constructing portfolios is diversification, minimizing the expected variantiee volatility

of a portfolio may be desirablédowever, such strategies lead ttee generatiorof almost non
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competitive returnsand we therefore decided to impose one additional constoairthe expected

returnthatshould not be lower than the average return observed across all assets
argmin U D(r)U
u R

- 1"E(r)
U E(r)?2 VIR )

Ui=1
a 20, i=12..M

3.5.3Alternative network-based asset allocation strategies

Network informationcan be used to limita p o r tekposure to Gascertain asset by not
allowing its weightto becomeoo large relative to others. Thianbe achieved by adding a constraint
that requiresveights to respect the ordering imposed by centrality measeslecided to add the
following constraint to the set of constraints defined above (see Se8#oh and3.5.2):
b2b Y a¢ta, ij=12..M (10)

Here,b; is the betweenness tifei-th asset in a given networkhe simple constraint defined

above was used for each of the centrality meastiedbétweenness, eigenvalue, or expected force)
and for each of the networks employed (complete, MST, PNIRGthreshold networg). We in turn
generatedwelve alternative networkased asset allocation stratedi@swhich the objective was to
maximize returns (see Secti8rb.1), andwe createdwelve alternative networkased asset allocation
strategiedfor minimizing risk (see Sectior3.5.2). However, whera complete network is usethe
resulting centrality measures are the same for betweenness and expectedlf@sd herefore we

only retained the laér strategy.

3.5.4 Combination strategies

Since the early worksef Bates and Grangdi969) it has beerargued that forecasts can be
improved by combining several unbiased but not highly correlated forecasts inforecast We
employ the same principle bglways combiningthe benchmark with several alternative network
baed asset allation strategies. This waye are able to obserwehich portfolio performance
characteristics of the benchmark portfolio are being imprayseh when combined witmetwork
based asset allocalti strategies.

For example, in Table,3ve have a strategy de Roothiesttategys fABet
50% of investor wealth is allocated to the benchmark strateg@yable 3 it is the return maximization
strategy defined in SectioB5.1), while the remaining 50% ispreadequally acrcss all strategies
which use betweenness centrality measures in the constraint (see S&c8hrOur choice of equal

weights is motivated by strand of literature following the work of deMiguel et al. (2007), which
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documents the difficulties of varioupa@ r oaches t o bevadi gthhtes on adpivwee r 5@ (

strategy.

3.6 Out-of-sample portfolio performanceevaluation

Out-of-sample evaluation is performed within a rolling estimation framewmiknicking an
investor with oneveek investment horizofVe use thdirst 52 weeks (approximately 1 year) to create
networks (i.e.to estimate longun correlations, expected historical returns) amtbsequently to
estimate6 opt i mal wei ght sdé ( Egq. Weluseomimatweights.for #sSe) ) of
allocation purposes with an investment horizon of one weék.calculate and storde realized
returnsfor the 53" weekfor eachof the portfolios. Next, we rollthe estimation window onaveek
ahead, i.e.we use data from the"2to 53¢ weeks t o esti mat e new O6opti mal
subsequently used for asset allocation purposes of thev&dk. The procedure is repeated until we
reach the end of our sample.

We report descriptive statistics for each of the portfoliad perform model coitfence set
procedure to comparesach portfolio with a given benchmark portfolio in termsrafan returns and

differentSharpe ratios.

3.6.1Portfolio characteristics

Each portfolio is evaluatdohsed orseveral bsic descriptive statistics: the minimum (Mithe
maximum(Max), the average portfolio retur(Mean) the ' (Q1) and 3 (Q3) quartiles of portfolio
returns and the standard deviation of portfolio returns (SDJe descriptive statistics are
complementd with a set of portfoliespecific measuregshe average drawdown (DDhe expected
shortfall (ES) the Burke ratio (BR),and theSharpe ratio (SR)As our sample covera wide range of
international stocks, in the main body of the text we evaluate performance of portfolios assuming a
zerorisk-free rate, as it is unclear which rate to actually use in such heterogeneous and international
sample.In the Appendix (Tables A2 and A.3, we report resultsvhere portfolio performance is
evaluated using excess return calculated as the difference of the realized return overotiith 3
Treasury bill rate.

If P, is the value of théth portfolio at timew, the drawdown islefined as

P

— iw 11
max P, )
t=1,..w '

i,w

The average drawdowbdD; is the average db;,, overw = 1,2, € , N. The expected shortfall
of thei-th portfolio ESUis defined as
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ES = E[ri In < -VaR"] (12)

Here, U denotes the lefiail quantile (usually 10%, 5%, and 1%lhe Burke ratio, BR, is
definedas the average portfolio return divideylthe sum of squared drawdowns:

= N

a w=1 rIi,W

R Ao

Comparing two portfolios via the Burke ratio allows us to asaé&ther the higher drawdown

(13)

associated with one portfolio is adequately compensated by its average return. In a similar fashion, we
employ thewidely-used Sharpe ratio and its extensions. The standard Sharpe ra@oisktfree rate
of 0% is defined as

-« N riw
SR = —agztl) ’ (14)

The SO is the standard deviation of portfolio returaad the ratio is used to assess whether the
average portfolio return compensates for the variabiligyortfolio returns. However, it is well known
that not all vambility is bad for the investoMVhen aninvestor is in the longosition, variability
associated with market declines is to be considdasitr as variability associated witthe market
increases. We therefousemodified versions of the Sharpe ratibave the denominator is substituted

with ESD. In turn,we assess whether the investor is compensated faailefisks.

3.6.2Model confidence set

We useHansen et ab. £011) model confidence seéb test whether from a given set of models
with a dimensionof s, there isa superior subse® with a dimensionof s*  In our empirical
application, we are interested in comparing portfolio returisStrarpe ratiosThe test is illustrated
on an example of using returns as a performance me#&iven that the benchmark returnagisk

free rater’,, letd,;,, denote thalifferential betweemeturns ofportfolio i andj:

_ f f
di,j,w_li,w -Ii,w (:Fiw rw-) (rjv_v rw) (15)
wherer denoteshegiven portfolio returnj, j = 1,2,é , s, andw=1,2,é , N. In the text, we saf,, to
0 for all w values (see Section 3.6.1 for a discussion and Appéradides A.2 and A.3or results
using the3-month Treasury bill)Formally, the multiple hypothesis test can be formulatedias

E[d;,;] = O for alli, j. We usehe following test statistics from Hansen et(2011)
T, = maxt, | (16)

iil s

wheret;; is defined as
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t. = alJ = év\ﬁldi'j'v"
i \/var* (aljw) N\/Vﬂr* (a”w)

andwhere the denominator is the bootstrap estimate of the variance of the average loss differential

(17)

betweenportfolios i andj. We follow Hansen et al. (2011) andethe blockbootstrapwith 5,000
replications. The distribution of the test statistics under the null hypothesis is also bootstrapped (see
Hansen et al.2011).The procedureapplied to Sharpe ratias similar. all returns are divided by the
selected risk measure (eithiae standard deviationr the absolute value of a given expected shortfall

in thecase of modified Sharpe ratios).

3.6.3 Transaction costs

To account for possible transaction cost efem overall portfolio performance, we follow
Peralta and Zareei (201&hdcalculate the breakven transaction cosBETQ of each strategy. This
approach assumes a fixed cost for each transaction lest miut require any assumptions on
transaction fees, which would become nuisance parameters in the calculation. Instdzd] @he
calculates how high costs would have to be to eliminate the return generated by a portfolio strategy.
Thus, different strategies mée directly compared without the newdestablish specific transaction
fees.

The breakeven transaction coss dependenbn portfolio returns but alson the turnover.
Strategieghat are less prone to frequent changes in asset allocations should &xkéritcosts and
thus should potentially have a higlieETC We calculate the turnover for egobrtfolio strategyi as

1 NtM ai,j,w(1+ri,j,w+1) ‘

=—aa aijwn” (18)
M w=l j=1 et .

é. ai,k,w (1+ I‘-i ,k,w+1)
k=1

Thus, for each time period, we calculate the difference in asset allochtbmeen optimal
weights for the next peridd j,w.1 (with the corresponding next period returg,.) for portfolioi and
assetj and the asset allocatianf the previous period, including the chanigethe relative asset
compositionresulting fromgains or losses between initial investnseahd the timeat which the
portfolio is being rebalanced.

The turnover is used ithe calculation ofBETG for each portflio strategyi asthe solution of
thefollowing equation

¢ & g o
n € M a . @+r...) g Y
3 g(1+ - BETGA |, oy - 1 0 =0 (19)
W_le e&e = A @iu@HT |0 U

e ¢ k=1 = 0

Here,r;\ is the return of the portfolio strateggt timew.
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4. Results

In this sectionwe compare alternative netwollased asset allocation strategies with respective
benchmarksRather thargoing into fine detail we focus on general differencbstweenindividual
(Section3.5.3) and combination strategies (Sect®b.4) based orrespective benchmark strategies
(Sectiors 3.5.1 and3.5.2).

4.1 Evaluation of return maximization strategies

Although the benchmark strate@y00) generatedhe highest average portfolio returexcept in
one case, the highest average portfolio retuas notfound to bestatistically significant (Hansen et
al.6b 2011tes)h from average returnaf individual and combined portfolio strategi€sirthermoretwo
straegies led to similalevels of averageeturns (V10andV16).

The benchmark strategy algeneratedhe higheststandard deviationSD), as all alternative
networkbased asset allocatimtrategiesvary less in terms gportfolio returns Interestingly, when
reviewingindividual strategie$v01-V11), SDwasfound to be oraverage 3.7 smaller than th&D
of the benchmark strategy. However, the returns waraverageb4.6% smaller as well, suggésg
that individual nework-based strategies have not improved the overaltregkn profile of the
benchmark portfolio. This isonfirmedby the Sharpe rat&(SR, whicharein most cases smalléran
thosereported for the benchmark portfolio.

On the other handa review ofthe combination strategie®/12-V19) shows thatthe SD
declinedby approximately 3.2%on averaggewhile the return onlygeclined by27.24. Thereforethe
Sharpe ratios of combination strategiesnow larger than the benchmaalkd in one case (V1&)so
statistically significant.

These resultssuggestthat networkbased asset allocation strateglesve the potential to
improve the riskreturn profile of the benchmark portfolidhis is further supported by additional Fisk
based measurgas the average drawdowBD) tends to besmaller while the Burke ratiBR) is
always largefor combination strategies

Regarding leftail risks, expected shortfalls the combination strategies are alwéyger(i.e.
less negative conditional retudrfer all three quantilesgSL0, ES5 andESL). More importantly, the
excess return of the benchmark portfolio does not seem to compensate for the extzsadkftas
the modified Sharpe ratioSRLO, SR andSRL) for combination strategi¢end togetimproved

For illustrative purposessigure4 plotsthe cumulative retusand drawdowof the benchmark
strategy angbresents théwo individual strategies that performed the best according tSB&R10
and SR5portfolio performance measuréihe figure clearly shows that the benchmark strategy led to
the highest cumulative returns most of the titng also suffered from exassive drawdown periods.

The cumulative returns of netwelblased asset allocati strategies are less volatile and considering
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the portfolio performance characteristics described ap@tveeems that these strategimgght be
valuable forinvestordiving in meanvariance utility framework

In Figure5, asset allocation is visualizéor the same set of strategies where we can obfeeve
portiono f i nv e s talbocated tospeeific hsseh dses (stocks, commodites, currentes, and
bonds). Clearly, regardless of the strategged stocks seem to dominate dynamics of asset allocation
over shortperiods whereeitherall or noinvestorwealth is allocatedo stocks(see spike@ the blue
polygon in Figure b

These findingded us to evaluate strategies based on the turnoveBBENG. Here, it is evident
that not onlyis the turnover much larger for individual netwdsksed strategiebut the BETC isalso
smaller, which suggests that although individual strategies led to impmasieceturn portfolio
characteristics, whetmansaction costaretaken into accounsuchbenefitsmay disappeafTurnover
and transaction costd combination strategiewebetterthanthose ofindividual strategiebut arestill
worse than those of the benchmarkWe therefore conclude thatnder the return maximization
portfolio approach the improved risk and lefail risk-adjusted returns of netwollased asset

allocation strategiearesacrificed by increased transaction c§$eble 2)
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Figure4 Cumulative returns and drawdowns of return maximization strategies
Notes:We show the benchmark strategy and only two individual strategies that performed the best according to the SR,
SR10, and SR5 portfolio performance measures.

Figure5 Asset allocations for selected return maximization strategies
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