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Abstract

Almost all known econometric models applied on a long term basis on financial
forex market do not work sufficiently. The reason is that transaction costs and arbi-
trage opportunity are not included, as this does not simulate the real financial markets.
Analyzes are not done on the non equidistance date but rather on the aggregate date,
which is also not a real financial case. Almost all known prediction models are not
stable for longer in treading on the financial forex market. In this chapter we would
like to show a new way how to analyze and, moreover, forecast financial market. We
utilize the projections of the real exchange rate dynamics onto the string-like topol-
ogy. Our approach is inspired by the contemporary movements in the string theory.
Inter-strings information transfer is analyzed as an analogy with dynamic of prices or
currency at specified exchange rate options.

PACS 11.25.Wx, 89.65.Gh, §9.90.4+n

Keywords: quantitative finance, string theory, trading strategy, financial forecasting,
risk management

1. Introduction

We are currently in the process of transfer of modern physical ideas into the neighboring
field called econophysics. The physical statistical view point has proved fruitful, namely, in
the description of systems where many-body effects dominate. However, standard, accepted
by physicists, bottom-up approaches are cumbersome or outright impossible to follow the
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behavior of the complex economic systems, where autonomous models encounter the in-
trinsic variability. We would like to transfer modern physics ideas into neighboring field
called econophysics.

Digital economy is founded on data. In the chapter, we suggest and analyze statistical
properties of heuristics based on the currency rate data which are arranged to mimic the
topology of the basic variants of the physical strings and branes. Our primary motivation
comes from the actual physical concepts [1, 2]; however, our realization differs from the
original attempts in various significant details. The second aspect of our method is that it
enables a transformation into a format which is useful for an analysis of a partial trend or
relative fluctuations on the time scale window of interest.

As with most science problems, the representation of data is the key to efficient and
effective solutions. The underlying link between our approach and the string theory may
be seen in the switching from a local to a non-local form of the data description. This
line passes from the single price to the multivalued collection of prices from the temporal
neighborhood which we term here the string map. As we will see later, an important role
in our considerations is played by the distance measure of the string maps. The idea of
exploring the relationship between more intuitive geometric methods and financial data is
not new. The discipline called the geometric data analysis includes many diverse exam-
ples of the conceptual schemes and theories grounded on the geometric representation and
properties of data. Among them we can emphasize the tree network topology that exhibits
usefulness in the studies of the world-trade network [3] and other network structures of the
market constructed by means of inter-asset correlations [4, 5]. The multivariate statistical
method called cluster analysis deals with data mapping onto representative subsets called
clusters [6]. Here we work on the concept that is based on projection data into higher di-
mensional vectors in the sense of the work [7, 8]. Also, arguments based on the metrics are
consistent with our efforts but not too obvious points in common with the original objectives
of the nonlinear analysis.

The string theory development over the past 25 years achieved a high degree of popu-
larity among physicists [9, 10]. The reason lies in its inherent ability to unify theories that
come from diverse physical spheres. The prime instrument of the unification represents
the concept of extra dimension. The side-product of theoretical efforts can be seen in the
elimination of the ultraviolet divergences of Feynman diagrams. However, despite the con-
siderable achievements, there is a lack of the experimental verification of the original string
theory. In contrast, in the present work we exploit time-series which can build the family of
the string motivated models of boundary-respecting maps. In a narrow sense, the purpose
of the present data-driven study is to develop statistical techniques for the analysis of these
objects.

Time series forecasting is a scientific field under continuous active development cov-
ering an extensive range of methods. Traditionally, linear methods and models are used.
Despite their simplicity, linear methods often work well and may well provide an adequate
approximation for the task at hand and are mathematically and practically convenient. How-
ever, the real life generating processes are often non-linear. This is particularly true for fi-
nancial time series forecasting. Therefore the use of non-linear models is promising. Many
observed financial time series exhibit features which cannot be explained by a linear model.
We derive two models for predictions of EUR/USD prices on the forex market. This is the
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first attempt for real application of the string theory in the field of finance, and not only in
high energy physics, where it is established very well.

There are plenty of non-linear forecast models based on different approaches (e.g.
GARCH [11], ARCH [12], ARMA [13], ARIMA [14] etc) used in financial time series
forecasting. Currently, perhaps the most frequently used methods are based on Artificial
Neural Networks (ANN, which covers a wide range of methods) and Support Vector Ma-
chines (SVM). A number of research articles compare ANN and SVM to each other and
to other more traditional non-linear statistical methods. Tay and Cao ([15]) examined the
feasibility of SVM in financial time series forecasting and compared it to a multilayer Back
Propagation Neural Network (BPNN). They showed that SVM outperforms the BP neural
network. Kamruzzaman and Sarker [16] modeled and predicted currency exchange rates
using three ANN based models and a comparison was made with the ARIMA model. The
results showed that all the ANN based models outperform the ARIMA model. Chen et al.
[17] compared SVM and BPNN taking the auto-regressive model as a benchmark in fore-
casting the six major Asian stock markets. Again, both the SVM and BPNN outperformed
the traditional models.

While the traditional ANN implements the empirical risk minimization principle, SVM
implements the structural risk minimization ([18]). Structural risk minimization is an in-
ductive principle for model selection used for learning from finite training data sets. It
describes a general model of capacity control and provides a trade-off between hypothe-
sis space complexity and the quality of fitting the training data (empirical error). For this
reason SVM is often chosen as a benchmark to compare other non-linear models to. Also,
there is a growing number of novel and hybrid approaches, combining the advantages of
various methods using for example evolutionary optimization, methods of computational
geometry and other techniques (e.g. [19], [20]).

In the present chapter we also exploits time series which can build the family of the
string-motivated models of boundary-respecting maps. The purpose of the present data-
driven study is to develop statistical techniques for the analysis of these objects and more-
over for the utilization of such string models onto the forex market. Both of the string
prediction models in this paper are built on the physical principle of the invariance in time
series of the forex market. Founding of a stationary state in the time series of the market
was studied in [21]

2. Data Analysis

First of all we need to mention some facts about data streams we analyzed. We analyze tick
by tick data of EUR/USD, GBP/USD, USD/JPY, USD/CAD, USD/CHF major currency
pairs from the OANDA market maker. We focussed on the three month period within three
selected periods of 2009 which capture moments of the financial crisis. The streams are
collected in such a way that each stream begins with Monday. More precisely, we selected
periods denoted as Aug-Sep (from August 3rd. to September 7th.), Sep-Oct (Sep.7-Oct.5)
and Oct-Nov (Sep.5-Nov.2). At first, the data sample has been decimated - only each 10th
tick was considered. This delimits results to the scales larger than 10 ticks. The mean time
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corresponding to the string length [ in ticks is given by

1 o

T(ls) = (T + 1) — (1)) ~ ———— > [t(r +Is) — t(7)]. 6))

Tup ~ Tdn T=Tdn

3. One Dimensional Maps

By applying standard methodologies of detrending one may suggest to convert original
series of the quotations of the mean currency exchange rate p(7) onto a series of returns
defined by
p(r+h) —p(1)
p(T+ h)

where h denotes a tick lag between currency quotes p(7) and p(7 + h), 7 is the index of the
quote. The mean p(7) = (Pask(7) + Poid(7))/2 is calculated from p,gk(7) and ppiq(7).

In the spirit of the string theory it would be better to start with the 1-end-point open
string map

; (@)

T+ h) —p(7)
p(T+ h)

where superscript (1) refers to the number of endpoints.

Later, we may use the notation P{p} which emphasizes the functional dependence
upon the currency exchange rate {p}. It should also be noted that the use of P highlights
the canonical formal correspondence between the rate of return and the internal string mo-
mentum.

Here the tick variable h may be interpreted as a variable which extends along the extra
dimension limited by the string size l5. A natural consequence of the transform, Eq.(3), is
the fulfilment of the boundary condition

PO,y = 2

, he<0,ls > (3)

PW(r,0)=0, 4)

which holds for any tick coordinate 7. Later on, we want to highlight effects of the rare
events. For this purpose, we introduce a power-law q-deformed model

(1) _ p(r+h) — p(T))
Py (1, h) fq< P \ he<0,lg > 5)
by means of the function
fq(z) = sign(z) |z|7, q>0. (6)

The 1-end-point string has defined the origin, but it reflects the linear trend in p(.) at the
scale l5. Therefore, the 1-end-point string map Pél) (.) may be understood as a q-deformed
generalization of the currency returns. The illustration of the 1-end-point model is given
in Fig.(1). The corresponding statistical characteristics displayed in Fig.(2) have been ob-
tained on the basis of a statistical analysis discussed in section 2..
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Figure 1. The illustrative examples of the currency data map for GBP/USD. The parts
(a)-(d) constructed for date Fri, 31 Jul 2009 time interval 15:06:37 - 15:43:09 GMT. Time
evolution of symmetric (P, (), S) and anti-symmetric (P(1):4) component of the 1-end-point
string of size Iy = 1000 calculated for ¢ = 1 (by means of Eq.(23)). In (c),(d) we see
the same data mapped by means of the partially closed 1-end-point string (¢ = 1) for
Ny = 10, according to Eq.(31)). (e) The calculation carried out for the 2-end-point string
for Is = 1000, ¢ = 6 at some instant. We see that conjugate variable X (51)6(7-, h) satisfies
the Neumann-type boundary conditions; (f) The instantaneous 2D-Brane state (date Fri, 31
Jul 2009 15:11:47 GMT) is computed according to Eq.(28).
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Figure 2. The variability in statistical characteristics caused by differences in topology and
q. Calculated for the period Aug-Sep, GBP/USD currency. The model with ¢ = 1 has
ability to reveal the currency long trend, on the other hand, the rare events are better visible

for the 2-end-point string. The effect of the partial compactification with IV,

= 4 [see

Eq.(31)] is demonstrated in the third column (again for the 2-end-point string).
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Clearly, the situation with a long-term trend is partially corrected by fixing Pq(2) (1, h)
at h = l5. The open string with two end points is introduced via the nonlinear map which
combines information about trends of p at two sequential segments

%”ﬁﬁ)zh((mT+h)_Mﬂ)(MT+%y_MT+m)), he<0,ls> .

p(T+h) p(T +1s)
(N
The map is suggested to include boundary conditions of Dirichlet type
Pq(Z)(ﬂ 0) = Py(r,l5) =0, at all ticks 7. ®)

In particular, the sign of Pq(Q) (7, h) comprises information about the behavior differences of
p(.) at three quotes (7, 7+ h, 7 +1s). The Pq(2) (7, h) < 0 occurs for trends of the different
sign, whereas Pq(Q)(T, h) > 0 indicates the match of the signs.

In addition to the variable Pq(Q) (7, h) we introduced the conjugate variable X, 52)(7') via

the recurrent summation
2 2 2
X, h+1) = XP(r,h) + PO (r,h— 1) [t(T+ h) —t(T + h—1)] )

(here t(.) stands for a time-stamp corresponding to the quotation index 7 in the argument).
The above discrete form is suggested on the basis of the time-continuous Newton second

law of motion X, ,52) (t,h) = ,1(2) (t, h) (written here for a unit mass). The form is equivalent

to the imposing of the quadratic kinetic energy term %(Pq(z))Q. Thus, the Hamiltonian
picture [10] can be reconstructed in the following way;

ls
H==Y [( PO (1, 1)) [Gext(T, h+ 1) — dext (7, )] XD (7, h)] . (10)

where ¢ext (7, h) is the external field term which depends on the transform of the currency
rate [see e.g. Eq.(7)]. We pass from the continuum to discrete theory by means of the
functional form

oH

PP = @y = Pext(T h A1) = Gexi (T, h) = P (r,h+ 1) — PP(1, by,
0Xq" (h)
(11
where Pf) (7, h) can be calibrated equal to Gext (T, h).
The discrete conjugate variable meets the Neumann type boundary conditions
xBr0=xP(1),  xP(r-1)=x3(1), (12)

which is illustrated in Fig.(1)(d).

A more systematic way to obtain the 2-end-point string map represents the method
of undetermined coefficients. The numerator of ¢ = 1 can be chosen in the functional
polynomial form of degree 2 with coefficients [y, . . ., 35 as follows:

P (1) = Bop?(r + h) + B1p?(r) + Bap*(7 + 1) (13)
+  Bsp(T)p(T + h) + Bap()p(T + Is) + Bsp(7 + h)p(T + 1s).
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Again, the Dirichlet conditions P(_)1 Num(T>0) = Py=1 Num(7, ls) = 0 yield P( )1 Num =
Bo(p(T) — p(1 + h))(p(T + 1) — p(T + h)) with arbitrary 3y. The overlooked denommator
part of fraction P( )1 then servers as a normalization factor.

Another interestmg issue is the generalizing 1-end-point string to include the effect of
many length scales

(M) p(r+1h) - (T+h))
Py h; {1 I I 14
q (T7 7{ } fq < (7_ + h) ) ( )
which relies on the sequence {I} = {[l;, ¢ = 1,...,N.}, including the end points

(minj=1,..n, l; and maxj=1,.. N, l;) as well as the N;, — 2 interior node points that di-
vide the string map into the sequence of unfixed segments of the non-uniform length (in
general).

4. Spin as a Profit for Long

Discrete dynamical rules are implemented where the string state is sequentially transferred
to the past and stored by means of instant replicas. In this model the m’th string of replica
system is described by the tuple

(X (MYm = 0,1, My =0, hops S™ e {11} (19)

including string coordinates and additional one spin supplementary variable S(™). The
meaning of the spin is the same as in particle physics where there are two possibilities
for the spin orientation of particle [22]. Suppose the long position is opened at the quote
hop and closed at hg > hgyp, then S (m) describes profit when S (m) — 41 or loss when
S0m) = _1. In the case of buy order the sign of S() can be deduced from the price
change according SM) = sgn(x,(hel) — a(hop))-

The differences between string states can be measured by the string-string Hilbert Lp-
distance as it follows

hop dx 1/p
DI = | ——— S 3 XMy - xmp| (16)
Xiop p—p j=0

where m, M are string-replica indices. The fuzzy character of the prediction of the spin
variable of M-th replica is described by means of

Mieq

Z Sy M) Mg = M — (hey — hop), (17)

which includes Boltzmann-like weights
exp ( c DDp / D )
m M)\’
ZMMO exp ( cD DZ(J )/DZ(, ))
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where the inter-replica distance is rescaled by the mean

(M) 1 Myea
D, = ———% DimM 19
P Myeq + 1 m=0 P ( )

4.1. Symbolic Dynamics and Inter-string Information Transfer

We postulated dynamics as ordered moves of the data. The moves originates from the initial
string X j(-M)(h) including transformation of data. The information then passes sequentialy

along copies X j(-m) in the sence of decremented replica index m according to

XMy — x;(h), S — sgn(wy(ha) — a(hop)),
XM Dy — xMpy, sM-D g

I O

xOm) « xMn)y, 5O s, (20)

We see that information becomes lost at X ](m:O)‘ This metod could be useful for trading

algorythm especially for selection of final trades.

5. Symmetry with Respect to p(.) — 1/p(.) Transform

The currency pairs can be separated into direct and indirect type. In a direct quote the
domestic currency is the base currency, while the foreign currency is the quote currency.
An indirect quote is just the opposite. Therefore, it would be interesting to take this sym-
metry into account. Hence, one can say that this two-fold division of the market network
admits duality symmetry. Duality symmetries are some of the most interesting symmetries
in physics. The term duality is used to refer to the relationship between two systems that
have different descriptions but identical physics (identical trading operations).

Let us analyze the 1-end-point elementary string map when the currency changes from
direct to indirect. The change can be formalized by means of the transformation

T : P{p(.)} — P{p()} = P{1/p())}, 1)

For the 1-end-point map model of the string, Eq.(5), we obtained

TP ) =T ) = 1y (B2 ) @)

. —(1
Let us consider two-member space of maps Vlgl) = {qul), PE] )}. Important, we see that
Tia preserves the Dirichlet boundary conditions, in addition, the identity operator ’ffi leaves

the elements of VI(Dl) unchanged. The space VI(Jl) is closed under the left action of 75. These

ideas are straightforward transferable to the 2-end-point string points.
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Now we omit the notation details and proceed according to Eq.(21). The map P(.) is
decomposable into a sum of symmetric and antisymmetric parts

PP=-(P+P), P*=-(P-P), (23)
respectively. Due to of normalization by 1/2, we get the projection properties
TaPS = PS TaP® = —PA. (24)

To be more concrete, we choose ¢ = 1 and obtain

@ws . 1] pn) p(T+h) WA 1 plr) p(r +h)
P =173 [pmh) LTI R S-S ey R
(25)

and

(2),A 1[ p(r) p(r+1&s)  p(r+h) p(7) p(r+1ls) p(r+h)
A 2 [pmzs) e BT Co R ey R ey e +zs>] (20)
p@s _ 1.1 [p(T+ ) ptr)  p(r)  pr+h) plr+h)  plr+ ls)]

! 2 p(r) p(r+1)  p(r+h) p(7) p(r+1ls)  plr+h)]’

We see that the Pq(i)l’s and Pq(i)l’s maps acquire formal signs of the systems with T'—dual
symmetry [2]. When the world described by the closed string of the radius R is indistin-
guishable from the world of the radius o< 1/R for any R, the symmetry manifests itself by
(R + const./R) terms of the mass squared operator. The correspondence with our model
becomes apparent one assumes that R corresponds to the ratio p(7)/p(7 + h) in Eq.(25).
However, we must also refer a reader to an apparently serious difference that in our model
we do not consider for the moment the compact dimension. One can also find in the option
price dynamics some real example of duality symmetry [23]. Concretely put-call duality
which means A call to buy foreign with domestic is equal to a put to sell domestic for for-
eign.” Also most questions will not spell out what is domestic or foreign but let you decide

what is the underlying asset and which is the strike asset.

5.1. 74 Transform under the Conditions of Bid-ask Spreads

Simply, the generalization can also be made with allowing for currency variables which
appear as a consequence of the transaction costs [24]. The occurrence of ask-bid spread
complicates the analysis in several ways. Instead of one price for each currency, the task
requires the availability to two prices. The impact of ask-bid spread on the time-series
properties has been studied within the elementary model [25].

Thus, for the purpose of a thorough and more realistic analysis of the market informa-
tion, it seems straightforward to introduce generalized transform

T3P P{ pasic (), poia(-) } = P{1/pia(-), 1/pask(-) } (27)

which converts to Eq.(22) in the limit of vanishing spread.
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6. Mapping to the Model of 2D Brane

Clearly, there is a possibility to go beyond a string model towards more complex maps in-
cluding alternative spread-adjusted currency returns. This is extension of string theory into
the higher dimensions from the string lines into the membranes called D-Branes [26]. For-
mally, the generalized mapping onto the 2D brane with the (h1, he) €< 0,15 > X < 0,15 >
coordinates which vary along two extra dimensions could be proposed in the following
form:

_ pask(T + hl) — pask(T) pask(T + ls) _ paSk(T T hl)
Pop o(T,h1,he) = fy << Pask (T + h1) ) < Dask (T + ls) ) %)

<Pbid(7') — poia(T + h2)> <pbid(7' + h2) = poia(7 + ls))) _

Prid (T) Duid (T + h2)

The map constituted by the combination of ’bid” and "ask™ quotes is constructed to satisfy
the Dirichlet boundary conditions

Pop (T, h1,0) = Pop 4(7, h1,ls) = Pap ¢(7,0, ha) = Pap 4(T, ls, ha) . (29)

In addition, the above construction, Eq.(28), has been chosen as an explicit example, where
the action of ’Z;gb becomes equivalent to the permutation of coordinates

T3P Pop o (7, h, ha) = Pap g(7, ha, hy) - (30)

Thus, the symmetry with respect to interchange of extra dimensions h1, hsy can be achieved
through Pop 4 + T >Pp .g- In a straightforward analogous manner one can get an antisym-
metric combination Pop 4 T bprn .g- For a certain instant of time we proposed illustration
which is depicted in Fig. (1)(b)

At the end of this subsection, we consider the next even simple example, where mixed
boundary conditions take place. Now let the 2-end-point string be allowed to pass to the 1-
end-point string by means of the homotopy Pq(};qi) (r,h,n)=(1 —n)Pq(ll) (1, h)+7]Pq(22) (1,h)
driven by the parameter n which varies from 0 to 1. In fact, this model can be seen as a
variant of the 2D brane with extra dimensions A and 7.

6.1. Partial Compactification

In the frame of the string theory, the compactification attempts to ensure compatibility of
the universe based on the four observable dimensions with twenty-six dimensions found in
the theoretical model systems. From the standpoint of the problems considered here, the
compactification may be viewed as an act of the information reduction of the original signal
data, which makes the transformed signal periodic. Of course, it is not very favorable to
close strings by the complete periodization of real input signals. Partial closure would be
more interesting. This uses pre-mapping

Nm—1

> p(r+1sm), 31)

m=0

p(1) = N

where the input of any open string (see e.g. Eq.(3), Eq.(7)) is made up partially compact.
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Thus, data from the interval < 7, 7 + [s(Ny, — 1) > are being pressed to occupy “little
space” h €< 0,1y >. We see that as Ny, increases, the deviations of p from the periodic
signal become less pronounced. The idea is illustrated in Fig.(1)(c),(d). We see that the
states are losing their original form (a),(b) are starting to create ripples.

For example, one might consider the construction of the (D + 1)-brane

b () 5
fq< (7 + ho) — )qu(pj (7 + hy) — B, <>) )

p(T + ho) (7 + hy)

maintained by combining (D + 1) 1-end-point strings, where partial compactification in
D extra dimensions is supposed. Of course, the construction introduces auxiliary variables

P (1) = SN p(r £ ).

7. Statistical Investigation of 2-end-point Strings

7.1. The Midpoint Information about String

In our present work, the strings and branes represent targets of physics-motivated maps
which convert an originally dynamic range of currency data into the static frame. Of course,
the data shaped by the string map have to be studied by the statistical methods. However,
the question remains open about the selection of the most promising types of maps from the
point of view of interpretation of their statistical response.

Many of the preliminary numerical experiments we performed indicating that the 2-end-
point strings with a sufficiently high ¢ (in this work we focus on ¢ = 6, but other unexplored
values may also be of special interest) yield interesting statistical information including
focus on rare events. Unfortunately, there is difficult or impossible to be exhaustive in this
aspect. Figure(3) shows how < PéQ) (7, h) > and the corresponding dispersion o p, change
with a string length.

7.2. The Analysis of P,(l;/2) Distributions

The complex trade fluctuation data can be characterized by their respective statistical mo-
ments. In the case of the string map the moments of the £th order can be naturally consid-
ered at the half length

Hae = (1P (7, 1s/2)|/9). (33)

The comparison of the results obtained for the 1-end point and 2-end point strings is de-
picted in Fig.4. The remarkable difference in the amplitudes is caused by the manner of
anchoring. The moments of longer strings are trivially larger.

7.3. Volatility vs. String Amplitude

The volatility as described here refers to the standard deviation of currency returns of a
financial instrument within a specific time horizon described by the length I5/2. The re-

turn volatility at the time scale /s/2 is defined by o0, (l5/2) = \/rg(ls/2) —r3(ls/2) using
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Figure 3. The illustrative calculations carried out for EUR/USD currency. Figure shows the
parts (a),(b) which include a view of two different epochs (and their different details). We
see the variability of the mean statistical characteristics of the 2-end-point open string. The
part (b) turns in sign, but remarkable exceptional scales corresponding to the local maxima
and minima remain the same. The string length is expressed in real-time units calculated
by means of Eq.(1). In part (c) we present anomalies - peaks roughly common for different
currencies. These picture of anomalies are supplemented by dispersions of Pq(z) (Is/2) (d).
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Figure 4. The mid-point fluctuations characterized by the statistical moments defined by
Eq.(33). The calculations are carried out for GBP/USD currency rate, for Aug-Sep period,
for different kinds of strings for several lengths. We see that fluctuations become more
significant as the string size increases. In addition, one may observe the 2-end-point string
to be more suppressive to the fluctuations.
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Figure 5. The scatterplot showing the relationship between the volatility o,.(7,ls/2) and
the string amplitudes Pl(Q)(lS /2) (¢ = 1) and P6(2)(lS /2) (¢ = 6), respectively. The sepa-
rating effect at high ¢ is visible. The plot indicates conservation or brake of the price trend
PéQ) (Is/2) over the tick time < 7,7 + Is >. We see that the trend becomes coupled with
the occurrence of specific isolated values of the volatility calculated for Is = 10000; period
Aug-Sep.

rm(ls) = Zijfl [(p(T+h) —p(T+h—1))/p(T+ h)]™ for m = 1, 2. In Fig.(5), the rate of
return volatility computed at the scale L = [;/2 demonstrates the linkage to the changes in
the price trend represented by PéQ) (Is/2). Since the trend changes do not follow Gaussian
distributions, we have used high ¢ to analyze the impact of rare events. In Fig.(5), we show
the identification of the semi-discrete levels of volatility by ¢ = 6, while setting ¢ = 1 does
not uncover common attributes. In the future interest one can compare our return volatil-
ity computed from the string amplitude with some volatility estimators or GARCH type of
models [27, 28].

8. Learning of Buying and Selling Signals for Currency Pairs

In financial trading, position is a binding commitment to buy or sell a given amount of
financial instruments. Open positions remain subject to fluctuations in the exchange rate.
Open positions are closed by entering into a trade that takes the opposite position to the
original trade. The net effect is to bring the total amount for currency pair back to zero.
The bid price (ppiq(7)) is always less than the ask price (p,sk (7)) because brokers pay less
than they receive for the same currency pair. The spread represents your cost to trade with
broker. The currency pair p(7) indicates how much of the quote currency is required to
purchase one unit of the base currency; particular currency, which comprises the physical
aspects of a nations money supply. For example, EUR/USD = 1.5467 indicates that one

Complimentary Contributor Copy



With Strings Toward Safety Future on Financial Markets 119

euro can buy 1.5467 US dollars.

8.1. Formalism of Trading Signals

Signals are produced by two indicators [ (%), 1(B) ¢ {0,1}. Signal for opening of sell
position is encoded by [/ (%) = 1, whereas I(F) = 1 signalizes open for buy
I AT) = pyiy(r)>pan(r+an): (34)
IOTAT) = L) <puaalr+A7): (35)

Here 7 is the timetick argument; posr(7 + A7) and pyiq(7 + A7) are future values of
currency after the time A7. The symbol 1.4 is indicator function taking the value 1
when the condition condit is satisfied (condit = true), 0 when the condition is unsatisfied.
In later analysis, we will distinguish symbols 7®) (7, 73,) from its prediction 1Y) (7, 737).
The indicator is defined as

I(Y) (T7 TM) = max{I(Y) (T7 ]-)7 I(Y) (T7 2)7 ey [(Y)(T7 TM)}? (36)

where Y € {S, B}; Tj is the maximum waiting time to open order. The operator max
is used for the logical disjunction. It results in 1 whenever one or more of its particular
indicators I(Y) (7, At) is equal to 1. This is the process of transformation of data with the
goal of highlighting useful information. We call strings as forms of data transformation to
analyze sequences of events.

The organization of currency information p(7) represents exchange rate

p(r) = % (Pask(T) + Pria(T)) » (37)

or alternatively p(7) = \/Dask (T)Pbia(T)-

8.1.1. String Maps

String map variants of the history influence models is defined as 1-end point string (with
end-point i = 0)
~_BN\@
P(l)(T7 h7 Q) =1- <M) y (38)
p(7)
h=0,1,2,...,1s, where [, is the string length.
Process of transferring continuous parameter of deformation Q into discrete counter-
parts is described
Q(j)szm"i_(Qmax_Qmin)NLQa j=0717---7NQ7 (39)

where 2-end-point string with end-points (h = 0, h = [;) is
—h)\® p(r = 1)\
PO(r h,Q)= [1— <p(7'—) 1— <—5)
(7, h, Q) [ o= h)

p(7) @0
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8.2. Decision Making, Binary Classification on the Basis of Nonlinear
Interconnected Strings

The architecture single layer forward can be defined as perception (binary classifier) with
2 x (Ng + 1) x (Is+ 1) input links and single output [ (Y) The activation function is

(41)

J(x):{ 1 >0

0 z<0°

Suggested here prediction model combines the effects of different topology (1-end-point)
vs. (2-end-point) strings, within them effects of the rare events controlled by the exponent
@, as well as the effect of tick delay (h)

ls N
() =0 ( oy f W) (&, b, 5) P8 (7, h, Q(j))) : 42)

k=1,2 h=0 j=0

where W) (E, h, j) interconnections/weights of the group are subjected to the supervised
learning technique which minimizes prediction error. One can choose e.q. the parameters
v = 10; Ng = 12; Qmin = —6; Qmaaz = 6; s = 50; N, = 10; and by applying standard
learning rules estimate the weights, analyze the relative importance of input units. Moreover
examine the stability of the achieved results in the frame of the committee machine class,
where several perceptrons are combined into a single response.

9. Correlation Function as Invariant

The meaning of invariant is that something does not change under transformation, such as
some equations from one reference frame to another. We want to extend this idea also on
the finance market, find some invariants in the finance data and utilize this as the prediction
for the following prices. Unfortunately this model is able to define only one step prediction,
see the definition below.

We suppose the invariant is in a form of correlation function

h=l
Clere) = Z W, <1 ~ DPt-n ) <1 B pt—l—h) ’ 43)
h=l, Pt—1-n Pt—2—h
with
e—h/A s
wy, = —
T S

including dependence on the time scale parameters [, [y and A. The relative weights satisfy
automatically >} _, wy, = 1.

A correlation function is a statistical correlation between random variables at two dif-
ferent points in our case the strings in time series. For simplicity as an example we used
only one point strings equation (5) with parameter () = 1. Ordinary the correlation function
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is defined as C(7,lp) = (P(7,lo) P(t 4+ 1,1y)). We suppose the invariant in the form of
the correlation function

- h=l p(T—h) p(tr—1—nh)
c@m>—-g%WWOQ—;GtT?m)Q‘EGT??B)’ )

with weight W (h) defined above. We assume the condition of the invariance between close
strings in 7 and at the next step 7 4 1 in time series (It is the exact meaning of the one step
prediction) in the form

C(T, lo) = C(T +1, lo). (46)

Now we want to find the exact expression for the one step prediction p(7 + 1). Therefore
we evaluate one step correlation invariant equation (46 )with initial condition [y = 0

W(0) (1 - %) <1 - %) -
W(0) (1 _M) <1 —%) +

p(7) T—1
p(7) ) < p(T = 1))
W(1 l———— ) |l ———=], 47
0 (1-57) (-5 “
which can be rewritten in the more compact form
~ Cpr )Y (, ()
C(r,0) =W(0) <1 ) ) <1 ol — 1)) +C(t+1,1) (48)
and
<1_p(7'+1)) _ C(T,O)—C(Tp—i;l,l)- 49)
p(7) w(0) (1 ;225)
We finally obtain the prediction
C(t+1,1)—C(t,0)
) =pm) 14 2 (50)
p(T ) p(T) ( W(O) (1 B p(pTzl)> )

valid for p(7) # p(7 — 1). These are general definitions for the one step prediction correla-
tion invariants. In the next section the similar equations can be found also for 2-end-point
and 1-end-point mixed string modes with ) > 0.

9.1. Prediction Model Based on the String Invariants (PMBSI)

Now we want to take the above-mentioned ideas onto the string maps of finance data. We
would like to utilize the power of the nonlinear string maps of finance data and establish
some prediction models to predict the behavior of the market similarly as in the works [29,
30, 31]. We suggest the method where one string is continuously deformed into the other.
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We analyze 1-end-point and 2-end-point mixed string models. The family of invariants is
written using the parametrization

A
C(r,A) = (1—nm)(1—m)>_ W(h) (51)
h

—0
Q
1 1 pT—i—h
7-+h p7'+l
p Q
1-— W 1-—
+ m( nﬂgg ( {p7+h )

A p(r+h)1%
tom W) (1_ ) ) e

X

where 71 € (—1,1),1m2 € (—1, 1) are variables (variables which we may be call homotopy
parameters), () is a real valued parameter, and the weight W (k) is chosen in the bimodal
single parameter form

[ 1-Wo, h<ly2,
win) _{ Wo,  h>1,/2. (53)

We plan to express p(7 + [5) in terms of the auxiliary variables

O p(r) 1¢
Ar(A) = (1 —=m)d -2 hZOW ( |:p(7'+h):| )’ (54)
A Q
A(A) = —(1—m)(1— W (h p(7) >Q7+h, (55)
o(8) = (1= m)( mhz:% ( [(T+h)] PR+ h)
Q
As(A) = mQ—n2) ) G >, (56)
h 0
A
As(A) = Y W(h), (57)
A
As(A) = = > W(h)p?(r +h). (58)

Thus the expected prediction form reads

[ Az(A) + As(A) /e
C(mo —ls, A) — A1 (A) — As(A) — Ag(A) ’

P(70 + lpr) = (59

where we use the notation 7 = 79 + [, — ls. The derivation is based on the invariance
O(ryls =) = C(1 =l ls = lpe), A =1 — U, (60)

where [, denotes the prediction scale.
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Figure 6. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on trades for one year period.

The model was tested for various sets of parameters [,, I, 71, 72, @ and the new
parameter ¢ which is defined as

e=1|C(r,1s — lpr) —C(1 — lprv ls — lpr)| (61)

and describes the level of invariance in real data. The best prediction (the best means that
the model has the best ability to estimate the right price) is obtained by using the following
values of parameters

ls=900, lpy=1, m=0, n=0, Q=6 e=10"17 (62)

The graphical descriptions of prediction behavior of the model with and without transaction
costs on the EUR/USD currency rate of the forex market are described in Figs 6-9. During
a one year period the model lost around 20% of the initial money. It executed 1983 trades
(Fig 6) where only 10 were suggested by the model (and earned money) and the rest of
them were random (which can be clearly seen in Figs 8, and 9). The problem of this model
is its prediction length (the parameter [,;), in this case it is one tick ahead. The price was
predicted correctly in 48.57% of all cases (16201 in one year) and from these 48.57% or
numerally 7869 cases only 0.13% or numerally 10 were suitable for trading. This small
percentage is caused by the fact that the price does not change too often one tick ahead.
One could try to raise the prediction length to find more suitable cases for trading. This
is only partly successful because the rising parameter I, induces a loss of the prediction
strength of the model. For example when [, = 2 (two ticks ahead) the prediction strength

decreases from around 50% to 15%.
The problem is that the invariant equation (46) is fulfilled only on the very short period

of the time series due to the very chaotic nature of financial data behavior. Therefore the
PMBSI is effective only on the one step prediction where there is very low probability
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Figure 7. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on days for one year period.
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Figure 8. The profit of the model on the EUR/USD currency rate without transaction costs
included dependence on trades for one year period.
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Figure 9. The profit of the model on the EUR/USD currency rate without transaction costs
included dependence on days for one year period.
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that time series change significantly. The situation, however, is different for more steps
prediction where there is, on the contrary, a very high probability of big changes in time
series to occur, and the following predictions have rather small efficiency in such cases. The
only way how to establish better prediction also for more steps prediction is to choose the
right weights equation (44). The right and optimized weights should considerably extend
the interval where equation (46) is fulfilled. Therefore it is also our task in the future work.

9.2. Experimental Setup

The experiments were performed on two time series. The first series represented artificial
data namely a single period of a sinusoid sampled by 51 regularly spaced samples. The
second time series represented proprietary financial data sampled daily over a period of
1295 days. The performance of PMBSI was compared to SVM and to naive forecast. There
were two error measures used, mean absolute error (MAE) and symmetric mean absolute
percentage error (SMAPE) defined as follows:

1 n
MAE = =3 |A - K[, (63)
nt:l
100 . |A, — F
SMAPE = —) —————— 64
w2 TS(ATT A ©y

where n is the number of samples, Ay is the actual value and F; is the forecast value. Each
time series was divided into three subsets: training, evaluation and validation data. The
time ordering of the data was maintained; the least recent data were used for training, while
the more recent data were used to evaluate the performance of the particular model with
the given parameters’ setting. The best performing model on the evaluation set (in terms of
MAE) was chosen and made to forecast for the validation data (the most recent) that were
never used in the model optimization process. Experimental results on the evaluation and
validation data are presented below. The parameters of the models were optimized by trying
all combinations of parameters sampled from given ranges with a sufficient sampling rate.
Naturally, this process is slow but it enabled us to get an image of the shape of the error
surface corresponding to the given settings of parameters and ensured that local minima are
explored. The above approach was used for both, PMBSI and SVM. The SVM models were
constructed so that the present value and a certain number of the consecutive past values
comprised the input to the model. The input vector corresponds to what will be referred to
here as the time window with the length l;,, (representing the equivalent of the length of the
string map [s by PMBSI).

10. Comparison

There was a preliminary experimental analysis performed of the PMBSI method performed.
The goal was to evaluate the prediction accuracy, generalization performance, convenience
of the method in terms of the operator effort needed to prepare a working model, computa-
tional time and other aspects of the PMBSI method that may have become obvious during
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the practical deployment. SVM was chosen as a benchmark. The experimental data com-
prised two sets: artificial data (a single period of a sinusoid) and real world data (financial,
price development). We will provide a brief conclusion of the analysis here. Each time
series was divided into three subsets for training, testing and validation. The results were
calculated on the validation sets that have been entirely absent in the process of optimization
of parameters.

The PMBSI predictor does not undergo a training process that is typical for ANN and
SVM where a number of free parameters must be set (synaptic weights by ANN, « coef-
ficients by SVM). PMBSI features a similar set of weights (/) but often very small and
calculated analytically. The parameters to be optimized are only four: Is, @, 11, n2. This,
clearly, is an advantage. On the other hand the optimal setting of the parameters is not easy
to find as there are many local minima on the error surface. In this analysis the optimal
setting was found by testing of all combinations of parameters from given ranges. Fig. 10
shows the Mean Absolute Error (MAE) of the 5-steps ahead forecast of the financial time
series corresponding to various settings of s and @ (171,72 = 0). But the figure makes
it also obvious that PMBSI’s performance is approximately the same for a wide range of
settings on this data.

Q 20 - 20 is

Figure 10. MAE corresponding to various settings of /s and () on the financial data. The
red dot is the global minimum of MAE.

For PMBSI to work the elements of time series must be non-zero otherwise the method
will return not a number forecasts only. The input time series must then be modified by
adding a constant and the forecast by subtracting the same constant. Even so the algorithm
returned a not a number forecast in approx. 20% of the cases on the financial data. In such
cases the last valid forecast was used. Due to reasons that are presently being evaluated the
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Table 1. Experimental results on artificial time series

Method Ly MAE MAE SMAPE
eval valid valid

PMBSI 0.000973 | 0.002968 | 8.838798
0.006947 | 0.034032 | 14.745538
0.015995 | 0.161837 | 54.303315

Iterated PMBSI - - -
0.003436 | 0.011583 | 10.879313
0.008015 | 0.028096 | 14.047025
SVM 0.011831 | 0.007723 | 10.060302

0.012350 | 0.007703 | 10.711573
0.012412 | 0.007322 | 11.551324

- 0.077947 | 25.345352

- 0.147725 | 34918149
- 0.207250 | 41.972591

Naive forecast

W N =] W] N =] W N =] WD —

Table 2. Optimal PMBSI parameters

lpr ls Q m 72

1 1210301 0.80]|-0.20
2 1510101 0.80 | -0.60
3 18 (0.10 | 0.80 | -0.60

accuracy of PMBSI is matching and even outperforming SVM for a single step predictions
but rapidly deteriorates for predictions of more steps ahead. Iterated prediction of several
steps ahead using the single step PMBSI predictor improves the accuracy significantly. The
sinusoid used for experiments was sampled by 51 points, the positive part of the wave was
used for optimization of the parameters and the rest for validation (approx. 50-50 division).
Fig. 11 shows the comparison of iterated versus the direct prediction using PMBSI. Table 1
shows the experimental results. The results of the best performing models are highlighted.

The optimal [, for SVM was 3 for all predictions. Table 2 shows the optimal settings found
for PMBSI. For [, = 1 when PMBSI outperformed linear SVM the optimal length of the
string map was shorter than the optimal time window for SVM; in the remaining cases it
was significantly longer.

11. Prediction Model Based on the Deviations from the Closed
String/Pattern Form (PMBCS)

For the next trading strategy we want to define some real values of the string sequences.
Therefore we define the momentum which acquired values from the interval (0,1). The
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Iterated vs. direct PMBSI forecast 3 steps ahead

— actual
0.2 — iterated
— direct

Figure 11. Iterated and direct prediction using PMBSI on artificial data.

momentum M is not strictly invariant as in the previous model of the time series in its
basic definition. It is a trading strategy to find such a place in the forex time series market
where M is exactly invariant or almost invariant and we can predict increasing or decreasing
of prices with higher efficiency. For example our predictor somewhere in the time series
has 55% of efficiency to predict the movement of price but in the invariant place of our
trading strategy where Eqs. (61), and (65) are almost invariant the efficiency of our predictor
increased to 80%. Therefore the idea to find the invariant in time series plays a crucial
role in our trading strategy but one still needs to find an appropriate expression for such a

prediction.
To study the deviations from the benchmark string sequence we define momentum as
ls o\ /@
1 p(T+h) — pmin(7) 1 < {27Tmh ]) ‘
M. m0.0) = — = (14 cos + 65
(la‘, ;Q,‘P) (ls + ]_ P pmaX(T) — Pmin (7‘) 2 ls =+ ]_ SO ( )
where
(T +h) — pmin (73 ls)
shil ; €(0,1),
Pstand (T S) pmax(T'e ls) — Pmin (T§ Zs) Pstand ( )
and
Pmax(Tsh3ls) =~ max  p(t+h),  pun(Tihil) = min  p(r+h),

he{0.1,2,...,1.} he{0,1,2,...,1:}

and ¢ is a phase of periodic function. The momentum defined above takes the values from the
interval M m.q,») € (0,1). The periodic function cos(¢%) in the definition of equation (65) could
be substituted by other types of mathematical functions. The results with different kinds of functions
could be different.

11.1. Elementary Trading Strategy Based on the Probability Density
Function of M

The purpose is to take advantage of it whenever the market conditions are favorable. As in the
previous model we are detrending forex data into the one dimensional topological object strings”
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with different parameters. The trading strategy is based on the description of rate curve intervals
by one value called the moment of the string. These moments are statistically processed and some
interesting values of moments are found. The values directly affect the opening and closing of trade
positions. The algorithm works in two complementary phases. The first phase consists of looking
for ”good” values of moments followed by second phase which uses results from the first phase and
opening/closing of trade positions occur. Simultaneously the first phase is looking for new “good”
values of moments.

Risk is moderated by a number of allowed trades that the algorithm can open during a certain
period. Also it is moderated by two paramaters which affect the selection of suitable moments for
trading. The maximum number of trades is 10 per hour. The algorithm is tested on various periods
of historical data. The number and period of simultaneously opened trades are monitored all the
time.

The first set of parameters describes the moment (simple scalar function of several variables
from the interval (0,1) ). The first set consists of these parameters: length of moment string (number
of ticks or time period), quotient or exponent of moment, frequency of moment function, and phase
shift of moment function. The second set of parameters controls trading strategy and consists of
these variables: maximum number of simultaneously opened trades, skewness of moments distribu-
tion and Sharpe ratio of closed trades. As soon as the algorithm calculates the value of the moment
and finds out that the value is ”good”, then it immediately carries out an appropriate command.

The risk of the algorithm is governed by the second set of parameters and can vary from zero
(low risk but also low or zero number of trades) to the boundary values controlled by the model
parameters. These boundary values are unlimited but could be easily affected by the skewness and
Sharpe ratio. These parameters can limit loss to certain value with accuracy £2 percent but also
limit overall profit significantly if low risk is desired.

An arbitrage opportunity is taking advantage of the occurrence of a difference in distribution.
Opportunity is measured by Kullback-Leibler divergence

- » pdf(M*(j))
D, _j(b%;s)pdf(M ()) log <pdf(M_(j))) (66)

where larger Dx1, means better opportunities (Dx1, > Dinhreshold) €.8- When Dir > Dipreshold
it means the buying of Euro against USD could be more profitable. Statistical significance means
the smaller the statistics accumulated into bins pdf(M *(35)), pdf(M ™ (j)), the higher is the risk (M
from the selected range should be widespread). The meaning of pdf in the definition of equation
above is the probability density function.

More generally we can construct the series of (I + 1) price ticks [p(7), p(T+1), ..., p(T+1)]
which are transformed into a single representative real value M (7 + [,). Nearly stationary series of
M (1 + 1) yield statistics which can be split into: branch where M is linked with future uptrend/
downtrend and branch where M is linked with future profit/ loss taking into account transaction
costs. Accumulation of pdf(M;" ) means (profit+/ loss-) or pdf(M1 " ) (profit+/ loss-). M ¥ in

long short
equation (66) describes when equation (65) brings profit and M ~ loss.

As in the previous section the model was again tested for various sets of free parameters [,
h, Q, ¢. This model can make “more-tick” predictions (in tests it varies from 100 to 5000 ticks).
Therefore it is much more successful than the previous model. It is able to make a final profit of
around 160% but this huge profit precedes a fall down of 140% of the initial state. It is important
to emphasize that all profits mentioned here and below are achieved by using leverage (borrowing
money) from 1 to 10. The reason for leverage is the fact that the model could simultaneously open
up to 10 positions (one position means one trade i.e. one pair of buy-sell transactions). If one decides
not to use any leverage the final profit decreases 10 times. On the other hand, with using the leverage
1 to 20 the final profit doubles itself. Of course, the use of higher leverages is riskier as dropdowns
are also higher. There is, for example, in Fig. 12 a dropdown approx. 6% around 600 trades. With
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Figure 12. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on trades for one year period.

the use of leverage 1 to 20 this dropdown rises to 12%.

128000 combinations of model’s parameters have been calculated. Figures 12-15 describe some
interesting cases of the prediction behavior of the model with the transaction cost included on the
EUR/USD currency rate of the forex market. Figures 12, and 13 describe the model (one set of
parameters) under conditions that the fall down must not be higher than 5%. The best profit achieved
in this case is 12%.

In order to sort out the best combinations of parameters it is helpful to use the statistical quantity
called the Sharpe ratio. The Sharpe ratio is a measure of the excess return per unit of risk in a trading

strategy and is defined as

S = M7 (67)

g

where R is the asset return, Ry is the return on a benchmark asset (risk free), &2 (R—R f) is the mean
value of the excess of the asset return over the benchmark return, and o is the standard deviation of
the excess of the asset return. You mention the Sharpe ratio Eq. (67). The values of the Sharpe ratio
for the best fit are e.g. for Fig. 15 it is the value 1.896 and for Fig. 16 it is the value 1.953, where as
a reference profit we choose a bank with 5% profit.

Figure 14 shows the case where the Sharpe ratio has the highest value from all sets of the
calculated parameters. One year profit is around 26% and the maximum loss is slightly over 5%.
Figure 15 describes the case requiring a high value of Sharpe ratio and with the aim to gain profit of
over 50%.

There exist sufficiently enough cases with high Sharpe ratio which leads to enhancement of
the model to create self-education model. This enhancement takes some ticks of data, finds out
the best case of parameters (high Sharpe ratio and also high profit) and starts trading with these
parameters for some period. Meanwhile, the trading with previously found parameters model is
looking for a new best combination of parameters. Figure 16 describes this self-education model
where parameters are not chosen and the model itself finds the best one from the financial data and
is subsequently looking for the best values for the next trading strategy.

12. Conclusion

We shown that the string theory may motivate the adoption of the nonlinear techniques of the data
analysis with a minimum impact of justification parameters. The numerical study recovered inter-
esting fundamental statistical properties of the maps from the data onto string-like objects. The
remarkable deviations from the features known under the notion of the efficiently organized market
have been observed, namely, for high values of the deformation parameter g.
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Figure 13. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on days for one year period.

Figure 14. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on trades for one year period.
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Figure 15. The profit of the model on the EUR/USD currency rate with transaction costs
included dependence on trades for one year period.
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Figure 16. The profit of the self education model on the EUR/USD currency rate with
transaction costs included dependence on trades for one year period.

The numerical analysis of the intra-string statistics was supplied qualitatively by the toy models
of the maps of the exponential and periodic data inputs. Most of the numerical investigations have
been obtained for the open topology; however, we described briefly the ways to partial compactifi-
cation. The data structures can also be mapped by means of the curled dimension which arises as a
sum of periodic data contributions. The idea of the compactified strings can be realized as well by
the application of the inverse Fourier transform of the original signal. The interesting and also chal-
lenging task represents finding of link between string map and log-periodic behaviour of speculative
bubbles of the stock market indices [32, 33]. It would be also interesting to examine R/S analysis of
the Hurst exponents [34, 35] for the case of finite strings instead of the usual point prices. The full
string dynamics analyzes with different currency on financial market was already published in [36].

The study of string averages exhibited occurrences of the anomalies at the time scales propor-
tional to the string length. We showed that global and common market timescales can be extracted
by looking at the changes in the currencies. The extensions of the string models of branes including
ask/bid spread were discussed. The membrane 2d-brane approach could be also helpful e.g. for
computations of the volatility surface in option pricing [37]. We studied the relationship between
the arbitrage opportunities and string statistics. We showed that extraction of the valuable informa-
tion about the arbitrage opportunities on given currency could be studied by means of the correlation
sum which reflected the details of the occupancy of phase-space by differently polarized strings and
branes.

We have 5 free parameters in our prediction models. We have also tried out-of-sample tests,
however, only using small data samples. We have not encountered “overfitting” due to the fact that
parameters are stable enough within our string theory approach to produce profit even if we slightly
change them. For all computations in the second model we are taking bid-offer spreads into account.
We are calculating with real values of bid-offer spreads from historical data and it is dependent on
where we are simulating on Oanda or Icap etc. A number of trades per day varies from 2 to 15
depending on fit strategy.

We established two different string prediction models to predict the behaviour of forex financial
market. The first model PMBSI is based on the correlation function as an invariant and the second
one PMBCS is an application based on the deviations from the closed string/pattern form. The
financial market invariants could be some other form of definition of scaling laws found in [38] We
found the difference between these two approaches. The first model cannot predict the behavior of
the forex market with good efficiency in comparison with the second one which, moreover, is able to
make relevant profit per year. From the results described we can conclude that the invariant model
as one step price prediction is not sufficient for big dynamic changes of the current prices on the
finance market. As can be seen in Figs. 8,9 when the transaction costs are switched off the model
has some tendency to make a profit or at least preserve fortune. It means that it could also be useful
but for other kinds of data, where the dynamics of changes are slower, e.g. for energetic [39] or
seismographic data [40] with longer periods of changes. Finally the PBMSI in the form presented in
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this paper should be applicable with good efficiency only to other kinds of data with smaller chaotic
behavior in comparison with financial data.

Moreover PMBSI is a method under development. Unlike SVM or ANN, at this stage PMBSI
does not require a training process optimizing a large number of parameters. The experimental
results indicate that PMBSI can match or outperform SVM in one step ahead forecasts. Also, it has
been shown that finding optimal settings for PMBSI may be difficult but the method’s performance
does not vary much for a wide range of different settings. Besides the further testing of PMBSI
we consider that fast methods for optimization of parameters must be developed. Because of the
character of the error surface we have chosen to use evolutionary optimization as the method of
choice. After a fast and successful parameters’ optimization method is developed optimization of
the weighting parameters (Eqgs. (44), and (50)) will be included into the evolutionary process.

The profit per year from the second prediction model was obtained from approximately 15 %
and more depending on the parameter set from the data we have chosen. This model is established
efficiently on the finance market and could be useful to predict future prices for the trading strategy.

Of course the model still needs to be tested further. With the flow of new financial data the
model can be more optimized and also, it could become resistant to a crisis. The presented models
are universal and could also be used for predictions of other kind of stochastic data. The self-
educated models presented in Fig. 16 are very useful because they are able to find on their own the
best parameter set from data. These models could also be very helpful for portfolio optimization
and financial risk management in the banking sector. Finally we very much hope that the presented
approach will be very interesting and useful for a broad spectrum of people working on the financial
market.

For another application of string approach, we sketched some hierarchical model of algorithmic
chemistry from string atoms to string molecules as a method of adaptive boosting. Discrete dynam-
ical rules are implemented where string state is sequentially transferred to the past and stored by
means of instant replicas as was developed in Section 4. We defined a spin of strings which could
detect a long-run profit where a fuzzy character of the prediction of the spin variable of N-th replica
can be investigated. Finally inter-strings information transfer can be analyzed as an analogy with
dynamic of prices or currency at a specified exchange rate options.

13. List of Terms

e String theory: is an active research framework in particle physics where particle are rather
1-dimensional oscillating open or closed lines “’strings”

e Brane theory: are membranes of different dimensionality from a one dimensional membrane
which is in fact a string lines, including 2, 3 or more dimensional membranes

e Extra dimension: string theory predicts extra dimensions, in classical string theory the number
of dimensions is not fixed by any consistency criterion

e Conjugate variable: are pairs of variables mathematically defined in such a way that they
become Fourier transform duals of one-another

e T-duality: is a symmetry of quantum field theories with differing classical descriptions,of
which the relationship between small and large distances in various string theories is a special case

e Compact dimension: is curled up in itself in very small Planck length and the fact that the
dimension is smaller than the smallest particle means that it cannot be observed by conventional
means

e Regge slope parameter: was introduced in the quantum theory of string, and its relation to the
string tension involves

e Spin in quantum mechanics: is an intrinsic form of angular momentum carried by elementary
particles, composite particles (hadrons), and atomic nuclei
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e Gateaux derivative: or directional derivative is often used to formalize the functional derivative
commonly used in the calculus of variations and physics
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